Background: The morbidity of nephrolithiasis is 2-3 times higher in males than in females, suggesting that androgen plays a key role in nephrolithiasis. The death of renal tubular epithelial cells (TECs) is an important pathophysiological process contributing to the development of nephrolithiasis. Therefore, the aim of this study is to investigate whether androgen directly induces TECs apoptosis and necrosis and its underlying mechanisms in kidney stone formation.
Materials And Methods: We compared serum testosterone level between male and female healthy volunteers and kidney stone patients. The in vivo nephrolithiasis model was established using glyoxylic acid, and calcium deposits were detected by van Kossa staining. In the in vitro study using mouse TECs (TCMK-1 cells) and human TECs (HK-2 cells), apoptosis, necrosis, and the expression of BH3-only protein Bcl-2-like 19 kDa-interacting protein 3 (BNIP3) were examined incubated with different doses of testosterone using flow cytometry. Levels of apoptosis-related proteins transfected with the BNIP3 siRNA were examined by western blotting. The mitochondrial potential (ΔΨm) was detected by JC-1 staining and flow cytometry. We monitored BNIP3 expression in the testosterone-induced TECs injury model after treatment with hypoxia inducible factor 1α (HIF-1α) and/or hypoxia inducible factor 2α (HIF-2α) inhibitors to determine the upstream protein regulating BNIP3 expression. Additionally, ChIP and luciferase assays were performed to confirm the interaction between HIF-1α and BNIP3.
Results: Both male and female patients have significantly higher testosterones compared with healthy volunteers. More calcium deposits in the medulla were detected in male mice compared to female and castrated male mice. Testosterone induced TECs apoptosis and necrosis and increased BNIP3 expression in a dose-dependent manner. Testosterone also increased Bax expression, decreased Bcl-2 expression and induced a loss of ΔΨm. This effect was reversed by BNIP3 knockdown. HIF-1α inhibition significantly decreased BNIP3 expression and protected TECs from testosterone-induced apoptosis and necrosis. HIF-2α inhibition, however, did not influence BNIP3 expression or TECs apoptosis or necrosis. Finally, HIF-1α interacted with the BNIP3 promoter region.
Conclusion: Based on these results, testosterone induced renal TECs death by activating the HIF-1α/BNIP3 pathway.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6394048 | PMC |
http://dx.doi.org/10.1186/s12967-019-1821-7 | DOI Listing |
J Reprod Infertil
January 2024
Department of Toxicology and Pharmacology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran.
Background: Testicular torsion is a critical urological emergency that can lead to testicular ischemia and significant tissue damage. Citrulline, a supplement known for enhancing cellular metabolism and mitigating oxidative stress and inflammation, has been explored for its protective effects against testicular injury resulting from torsion and detorsion in rat models.
Methods: This study involved 42 Wistar rats, divided into six groups: Sham, torsion/detorsion (T/D), and four groups receiving varying doses of Citrulline (300, 600, 900 ) and vitamin E (20 ).
Zhejiang Da Xue Xue Bao Yi Xue Ban
January 2025
Department of Family Medicine, Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China.
Inflammatory senescence is a process of cellular dysfunction associated with chronic inflammation, which plays a significant role in the onset and progression of liver diseases,and the research on its mechanisms becomes a hotspot currently. In viral hepatitis, the mechanisms of inflammatory senescence primarily involve oxidative stress, cell apoptosis and necrosis, as well as gut microbiota dysbiosis. In non-alcoholic fatty liver disease, the mechanisms of inflammatory senescence are more complex, involving insulin resistance, fat deposition, lipid metabolism disorders, gut microbiota dysbiosis, and NAD metabolism abnormalities.
View Article and Find Full Text PDFCell Rep
January 2025
School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China. Electronic address:
Idiopathic pulmonary fibrosis (IPF) is a fatal lung disease characterized by excess accumulation of the extracellular matrix (ECM). The role of macrophage-fibroblast crosstalk in lung fibrogenesis is incompletely understood. Here we found that fibroblast growth factor-inducible molecule 14 (Fn14), the receptor for tumor necrosis factor-like weak inducer of apoptosis (TWEAK) is highly induced in myofibroblasts in the lungs of IPF patients and the bleomycin-induced lung fibrosis model.
View Article and Find Full Text PDFFEBS J
January 2025
Department of Biochemistry and Molecular Biology, School of Medicine, Southeast University, Nanjing, China.
TNFAIP3-interacting protein 1 (TNIP1; also known as ABIN-1) is a ubiquitin-binding protein that suppresses death-receptor- or Toll-like receptor-mediated apoptosis and necroptosis; however, it remains unclear whether ABIN-1 is capable of regulating pyroptosis. In the present study, we found that, in mouse embryonic fibroblasts and macrophages, ABIN-1 deficiency sensitized cells to poly(I:C) + TAK1 inhibitor 5Z-7-oxozeaenol-induced pyroptosis besides apoptosis and necroptosis. The sensitizing effect of ABIN-1 deficiency on pyroptosis depended on caspase-8 and its adaptor molecule FAS-associated death domain protein.
View Article and Find Full Text PDFFish Shellfish Immunol
January 2025
International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Marine Biomedical Science and Technology Innovation Platform of Lin-gang Special Area, Shanghai 201306, China. Electronic address:
Ocean acidification and warming are significant stressors impacting marine ecosystems, exerting profound effects on the physiological ecology of marine organisms. We investigated the impact of ocean acidification and warming on the immune system of mussels, focusing on the regulatory mechanisms of intrinsic and extrinsic apoptosis. The study explored the effects on the immune response ability of mussels (Mytilus coruscus) after 14 and 21 days under combined conditions of different temperatures (20 °C and 30 °C) and pH (8.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!