A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Transfer-Learning-Based Coarse-Graining Method for Simple Fluids: Toward Deep Inverse Liquid-State Theory. | LitMetric

Transfer-Learning-Based Coarse-Graining Method for Simple Fluids: Toward Deep Inverse Liquid-State Theory.

J Phys Chem Lett

Department of Mechanical Science and Engineering, Beckman Institute for Advanced Science and Technology , University of Illinois at Urbana-Champaign, Urbana , Illinois 61801 , United States.

Published: March 2019

Machine learning is an attractive paradigm to circumvent difficulties associated with the development and optimization of force-field parameters. In this study, a deep neural network (DNN) is used to study the inverse problem of the liquid-state theory, in particular, to obtain the relation between the radial distribution function (RDF) and the Lennard-Jones (LJ) potential parameters at various thermodynamic states. Using molecular dynamics (MD), many observables, including RDF, are determined once the interatomic potential is specified. However, the inverse problem (parametrization of the potential for a specific RDF) is not straightforward. Here we present a framework integrating DNN with big data from 1.5 TB of MD trajectories with a cumulative simulation time of 52 μs for 26 000 distinct systems to predict LJ potential parameters. Our results show that DNN is successful not only in the parametrization of the atomic LJ liquids but also in parametrizing the LJ potential for coarse-grained models of simple multiatom molecules.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpclett.8b03872DOI Listing

Publication Analysis

Top Keywords

liquid-state theory
8
inverse problem
8
potential parameters
8
potential
5
transfer-learning-based coarse-graining
4
coarse-graining method
4
method simple
4
simple fluids
4
fluids deep
4
deep inverse
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!