Previously, we reported that nicotine reduces erlotinib sensitivity in a xenograft model of PC9, an epidermal growth factor receptor-tyrosine kinase inhibitor (EGFR-TKI)-sensitive non-small-cell lung cancer cell line. The present study examined whether smoking induces erlotinib resistance in vitro. We assessed resistance to EGFR-TKIs by treating cancer cell lines with erlotinib, afatinib, or osimertinib, and serum collected from smokers within 30 min of smoking and that from a non-smoker as a control. We also assessed erlotinib resistance by treating PC9 cells exposed to serum from a smoker or a non-smoker, or serum from an erlotinib user. Treatment of the cancer cell lines with serum from smokers induced significant erlotinib resistance, compared with the control ( < 0.05). Furthermore, serum samples with a high concentration of cotinine (a nicotine exposure indicator) demonstrated stronger erlotinib resistance than those with low concentrations. Similar to the observations with erlotinib treatment of cell lines, the analysis of serum from erlotinib users revealed that smokers demonstrated significantly reduced sensitivity to erlotinib ( < 0.001). In conclusion, our present results support the hypothesis that smoking contributes to resistance to erlotinib therapy in non-small-cell lung cancer.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6468898PMC
http://dx.doi.org/10.3390/cancers11030282DOI Listing

Publication Analysis

Top Keywords

erlotinib resistance
16
erlotinib
12
non-small-cell lung
12
lung cancer
12
cancer cell
12
cell lines
12
resistance erlotinib
8
erlotinib therapy
8
therapy non-small-cell
8
serum erlotinib
8

Similar Publications

Background: The RELAY-Brain trial examined the clinical utility and survival impacts of ramucirumab (RAM) combined with epidermal growth factor receptor (EGFR)-TKI in patients with EGFR-mutated non-small-cell lung cancer (NSCLC) with brain metastases. Although RAM combined with erlotinib (ERL) is known to have clinical benefits, the benefits in patients with baseline brain metastases remain unclear. This report examined the long-term follow-up data (Japan Registry of Clinical Trials: jRCTs2051190027) of the same patients, analyzing relevant biomarkers from tumor and plasma samples.

View Article and Find Full Text PDF

Metastatic cancer cells undergo metabolic reprogramming, which involves changes in the metabolic fluxes, including endocytosis, nucleocytoplasmic transport, and mitochondrial metabolism, to satisfy their massive demands for energy, cell division, and proliferation compared to normal cells. We have previously demonstrated the ability of two different types of compounds to interfere with linchpins of metabolic reprogramming, Pitstop-2 and 1,6-hexanediol (1,6-HD). 1,6-HD disrupts glycolysis enzymes and mitochondrial function, enhancing reactive oxygen species production and reducing cellular ATP levels, while Pitstop-2 impedes clathrin-mediated endocytosis and small GTPases activity.

View Article and Find Full Text PDF

Comprehensive Cellular Senescence Evaluation to Aid Targeted Therapies.

Research (Wash D C)

January 2025

State Key Laboratory of Genetic Engineering, National Clinical Research Center for Aging and Medicine, Huashan Hospital, Collaborative Innovation Center of Genetics and Development, Human Phenome Institute, Center for Evolutionary Biology, Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Sciences, Fudan University, Shanghai 200438, China.

Drug resistance to a single agent is common in cancer-targeted therapies, and rational drug combinations are a promising approach to overcome this challenge. Many Food and Drug Administration-approved drugs can induce cellular senescence, which possesses unique vulnerabilities and molecular signatures. However, there is limited analysis on the effect of the combination of cellular-senescence-inducing drugs and targeted therapy drugs.

View Article and Find Full Text PDF

The Chansu injection (CSI), a sterile aqueous solution derived from Chansu, is applied in clinical settings to support antitumor and anti-radiation treatments. CSI's principal active components, bufadienolides (≥90%), demonstrate potential effects on pancreatic cancer (PDAC), but their underlying mechanisms remain unclear. This study aimed to elucidate the antitumor effects and pathways associated with CSI in PDAC.

View Article and Find Full Text PDF

Erlotinib Improves the Response of Glioblastoma Cells Resistant to Photodynamic Therapy.

Brain Sci

November 2024

Departamento de Biología Molecular, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto (UNRC), INBIAS (CONICET-UNRC), Río Cuarto 5800, Argentina.

Glioblastoma (GBM) is the most common and deadly type of brain cancer in adults. Dysregulation of receptor tyrosine kinase pathways, such as the epidermal growth factor receptor (EGFR), contributes to therapeutic resistance. Drugs that inhibit tyrosine kinase activity and monoclonal antibodies against EGFR are strategies used in clinical trials.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!