Comprehensive Comparative Analysis of Cholesterol Catabolic Genes/Proteins in Mycobacterial Species.

Int J Mol Sci

Department of Biochemistry and Microbiology, Faculty of Science and Agriculture, University of Zululand, KwaDlangezwa 3886, South Africa.

Published: February 2019

In dealing with , the causative agent of the deadliest human disease-tuberculosis (TB)-utilization of cholesterol as a carbon source indicates the possibility of using cholesterol catabolic genes/proteins as novel drug targets. However, studies on cholesterol catabolism in mycobacterial species are scarce, and the number of mycobacterial species utilizing cholesterol as a carbon source is unknown. The availability of a large number of mycobacterial species' genomic data affords an opportunity to explore and predict mycobacterial species' ability to utilize cholesterol employing methods. In this study, comprehensive comparative analysis of cholesterol catabolic genes/proteins in 93 mycobacterial species was achieved by deducing a comprehensive cholesterol catabolic pathway, developing a software tool for extracting homologous protein data and using protein structure and functional data. Based on the presence of cholesterol catabolic homologous proteins proven or predicted to be either essential or specifically required for the growth of H37Rv on cholesterol, we predict that among 93 mycobacterial species, 51 species will be able to utilize cholesterol as a carbon source. This study's predictions need further experimental validation and the results should be taken as a source of information on cholesterol catabolism and genes/proteins involved in this process among mycobacterial species.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6429209PMC
http://dx.doi.org/10.3390/ijms20051032DOI Listing

Publication Analysis

Top Keywords

mycobacterial species
24
cholesterol catabolic
20
cholesterol
12
catabolic genes/proteins
12
cholesterol carbon
12
carbon source
12
comprehensive comparative
8
comparative analysis
8
analysis cholesterol
8
mycobacterial
8

Similar Publications

Background: Due to its increasing prevalence and suboptimal treatment, non-tuberculous mycobacterial (NTM) infection is an emerging problem in patients with cystic fibrosis (CF). Detailed description of regional NTM prevalence and distribution, and identification of predictors of NTM acquisition in CF are essential to optimise treatment and surveillance guidelines.

Methods: A retrospective, multi-center analysis was conducted between the years 2020 and 2022 on data from 232 adult patients registered in the Hungarian CF Registry in 2022.

View Article and Find Full Text PDF

Unlabelled: The complex (MAC) is a common causative agent causing nontuberculous mycobacterial (NTM) pulmonary disease worldwide. Whole-genome sequencing was performed on a total of 203 retrospective MAC isolates from respiratory specimens. Phylogenomic analysis identified eight subspecies and species.

View Article and Find Full Text PDF

Host Long Noncoding RNAs as Key Players in Mycobacteria-Host Interactions.

Microorganisms

December 2024

Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 74078, USA.

Mycobacterial infections, caused by various species within the Mycobacterium genus, remain one of the main challenges to global health across the world. Understanding the complex interplay between the host and mycobacterial pathogens is essential for developing effective diagnostic and therapeutic strategies. Host long noncoding RNAs (lncRNAs) have emerged as key regulators in cellular response to bacterial infections within host cells.

View Article and Find Full Text PDF

Unlabelled: Mycobacterial cell envelopes are rich in unusual lipids and glycans that play key roles during infection and vaccination. The most abundant envelope glycolipid is trehalose dimycolate (TDM). TDM compromises the host response to mycobacterial species via multiple mechanisms, including inhibition of phagosome maturation.

View Article and Find Full Text PDF

Non-tuberculous mycobacterial skin infection lead to complex and lengthy treatment cycles. Antimicrobial photodynamic therapy (aPDT) is an emerging promising approach for treating infections. This study aims to assess the effects of aPDT using curcumin as a photosensitizer (PS) on non-tuberculous mycobacteria, Mycobacterium abscessus, a subtype that has become common in dermatology in recent years.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!