Diseased plants of oat (Avena sativa L.) exhibiting abnormal proliferation of spikelets were observed in the field in Raseniai, Lithuania. The possible association of a phytoplasma with the disease, termed oat proliferation (OatP), was determined using polymerase chain reaction (PCR) for amplification of phytoplasmal ribosomal (r) RNA gene (rDNA) sequences from template DNA extracted from the diseased oats. DNA extractions and nested PCRs were conducted as previously described (2). In the nested PCRs, the first reaction was primed by phytoplasma-universal primer pair P1/P7, and the second (nested) PCR was primed by primer pair R16F2n/R16R2 (F2n/R2). Phytoplasmal rDNA was amplified in the nested PCR, indicating that the plants contained a phytoplasma, designated oat proliferation (OatP) phytoplasma. The OatP phytoplasma was identified and classified according to the system of Lee et al. (2) through restriction fragment length polymorphism (RFLP) analysis of 16S rDNA amplified in the PCR primed by F2n/R2. On the basis of collective RFLP patterns of the 16S rDNA, the OatP phytoplasma was classified as a member of group 16SrI (group I, aster yellows phytoplasma group). The RFLP patterns of the 16S rDNA were indistinguishable from those of 16S rDNA from tomato big bud (BB) phytoplasma and other phytoplasmas classified in group I, subgroup A (subgroup I-A, tomato big bud phytoplasma subgroup). The 1.8-kbp rDNA product of PCR primed by primer pair P1/P7 was cloned, and its nucleotide sequence was determined. The sequence was deposited in GenBank under Accession No. AF453416. Results from putative restriction site analysis of the cloned and sequenced rDNA were in excellent agreement with the results from enzymatic RFLP analysis of uncloned rDNA from OatP-diseased oat plants. Sequence similarity between the 1.8-kbp rDNA of OatP phytoplasma and that of BB phytoplasma (GenBank No. AF222064) was 99.2%; 9 of the 14 base changes were in the 16S-23S rRNA intergenic spacer region. The base differences in rDNA may signal that the OatP and BB phytoplasmas are mutually distinct in their biologies. Phytoplasmas classified in subgroup I-A have previously been reported in a broad range of plant species in North America and Europe, although there are no previous definitive reports of oat as a host of a subgroup I-A phytoplasma (3,4). In 1977, Fedotina (1) reported electron microscopy of a mycoplasma-like organism (phytoplasma) in pseudorosette-diseased oat plants in Siberia, but the identity of that phytoplasma remains unknown. Subgroup I-A phytoplasma strains are geographically widespread and have been found in numerous plant species (3,4). The discovery reported here, of a subgroup I-A phytoplasma in diseased oats in Lithuania, provokes questions concerning possible impacts of this phytoplasma on oat cultivation in central Europe and other regions. References: (1) V. L. Fedotina. Arch. Phytopathol. Pflanzenschutz 13:177, 1977. (2) I.-M. Lee et al. Int. J. Syst. Bacteriol. 48:1153, 1998. (3) C. Marcone et al. Int. J. Syst. Evol. Microbiol. 50:1703, 2000. (4) D. Valiunas et al. Plant Dis. 85:804, 2001.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1094/PDIS.2002.86.4.443B | DOI Listing |
Immun Ageing
June 2024
Shanghai Key Laboratory of Psychotic Disorders, Brain Health Institute, National Center for Mental Disorders, National Center for Mental Disorders, Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai, 200030, China.
Background: Neutrophils play an essential role in Alzheimer's disease (AD) pathology. However, the extent of their heterogeneity remains poorly explored, particularly in the context of developing novel therapies targeting these cells.
Results: We investigate the population structure of neutrophils purified from peripheral blood samples of AD mice.
Immun Ageing
June 2024
Department of Respiratory Medicine and Infectious Disease, Graduate School of Medicine, Yamaguchi University, Ube, Japan.
Background: The magnitude and durability of cell-mediated immunity in older and severely frail individuals following coronavirus disease 2019 (COVID-19) vaccination remain unclear. A controlled immune response could be the key to preventing severe COVID-19; however, it is uncertain whether vaccination induces an anti-inflammatory cellular immune response. To address these issues, a 48-week-long prospective longitudinal study was conducted.
View Article and Find Full Text PDFImmun Ageing
October 2023
Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, People's Republic of China.
Background: Hip fractures in the elderly have significant consequences, stemming from the initial trauma and subsequent surgeries. Hidden blood loss and stress due to concealed injury sites could impact the whole osteoimmune microenvironment. This study employs scRNA-seq technique to map immune profiles in elderly hip fracture patients from post-trauma to the recovery period, investigating the dynamic changes of immune inflammation regulation subgroups.
View Article and Find Full Text PDFImmun Ageing
October 2022
Department of Endocrinology, The First Affiliated Hospital of Sun Yat-Sen University, No. 58, ZhongShan Road 2, Guangzhou, Guangdong, 510080, People's Republic of China.
Background: Vaccination is important in influenza prevention but the immune response wanes with age. The circadian nature of the immune system suggests that adjusting the time of vaccination may provide an opportunity to improve immunogenicity. Our previous cluster trial in Birmingham suggested differences between morning and afternoon vaccination for some strains in the influenza vaccine in older adults.
View Article and Find Full Text PDFImmun Ageing
August 2019
1Clinical Eye Research Division, Department of Ophthalmology, Zealand University Hospital, Vestermarksvej 23, DK-4000 Roskilde, Denmark.
Background: Peripheral blood mononuclear cells (PBMCs) are implicated in the pathogenesis of age-related macular degeneration (AMD). We here mapped the global gene transcriptome of PBMCs from patients with different clinical subtypes of late AMD.
Results: We sampled fresh venous blood from patients with geographic atrophy (GA) secondary to AMD without choroidal neovascularizations ( = 19), patients with neovascular AMD without GA ( = 38), patients with polypoidal choroidal vasculopathy (PCV) ( = 19), and aged control individuals with healthy retinae ( = 20).
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!