Pitch is a fundamental attribute of auditory perception. The interaction of concurrent pitches gives rise to a sensation that can be characterized by its degree of consonance or dissonance. In this work, we propose that human auditory cortex (AC) processes pitch and consonance through a common neural network mechanism operating at early cortical levels. First, we developed a new model of neural ensembles incorporating realistic neuronal and synaptic parameters to assess pitch processing mechanisms at early stages of AC. Next, we designed a magnetoencephalography (MEG) experiment to measure the neuromagnetic activity evoked by dyads with varying degrees of consonance or dissonance. MEG results show that dissonant dyads evoke a pitch onset response (POR) with a latency up to 36 ms longer than consonant dyads. Additionally, we used the model to predict the processing time of concurrent pitches; here, consonant pitch combinations were decoded faster than dissonant combinations, in line with the experimental observations. Specifically, we found a striking match between the predicted and the observed latency of the POR as elicited by the dyads. These novel results suggest that consonance processing starts early in human auditory cortex and may share the network mechanisms that are responsible for (single) pitch processing.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6413961PMC
http://dx.doi.org/10.1371/journal.pcbi.1006820DOI Listing

Publication Analysis

Top Keywords

auditory cortex
12
consonance processing
8
concurrent pitches
8
consonance dissonance
8
human auditory
8
pitch processing
8
pitch
6
consonance
5
processing
5
modeling meg
4

Similar Publications

The inferior colliculus (IC) is an important midbrain station of the auditory pathway, as well as an important hub of multisensory integration. The adult mammalian IC can be subdivided into three nuclei, with distinct cyto- and myeloarchitectonical profiles and distinct calcium binding proteins expression patterns. Despite several studies about its structural and functional development, the knowledge about the human fetal IC is rather limited.

View Article and Find Full Text PDF

Communication sound processing in mouse AC is lateralized. Both left and right AC are highly specialised and differ in auditory stimulus representation, functional connectivity and field topography. Previous studies have highlighted intracortical functional circuits that explain hemispheric stimulus preference.

View Article and Find Full Text PDF

Neurobiological mechanism of music improving gait disorder in patients with Parkinson's disease: a mini review.

Front Neurol

January 2025

Department of Basic Medical Sciences, School of Medicine, Xiamen University, Xiamen, China.

Walking ability is essential for human survival and health. Its basic rhythm is mainly generated by the central pattern generator of the spinal cord. The rhythmic stimulation of music to the auditory center affects the cerebral cortex and other higher nerve centers, and acts on the central pattern generator.

View Article and Find Full Text PDF

Auditory processing in the cerebral cortex is considered to begin with thalamocortical inputs to layer 4 (L4) of the primary auditory cortex (A1). In this canonical model, A1 L4 inputs initiate a hierarchical cascade, with higher-order cortices receiving pre-processed information for the slower integration of complex sounds. Here, we identify alternative ascending pathways in mice that bypass A1 and directly reach multiple layers of the secondary auditory cortex (A2), indicating parallel activation of these areas alongside sequential information processing.

View Article and Find Full Text PDF

In our dynamic environments, predictive processing is vital for auditory perception and its associated behaviors. Predictive coding formalizes inferential processes by implementing them as information exchange across cortical layers and areas. With laminar-specific blood oxygenation level dependent we measured responses to a cascading oddball paradigm, to ground predictive auditory processes on the mesoscopic human cortical architecture.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!