Amoebophrya is part of an enigmatic, diverse, and ubiquitous marine alveolate lineage known almost entirely from anonymous environmental sequencing. Two cultured Amoebophrya strains grown on core dinoflagellate hosts were used for transcriptome sequencing. BLASTx using different genetic codes suggests that Amoebophyra sp. ex Karlodinium veneficum uses the three typical stop codons (UAA, UAG, and UGA) to encode amino acids. When UAA and UAG are translated as glutamine about half of the alignments have better BLASTx scores, and when UGA is translated as tryptophan one fifth have better scores. However, the sole stop codon appears to be UGA based on conserved genes, suggesting contingent translation of UGA. Neither host sequences, nor sequences from the second strain, Amoebophrya sp. ex Akashiwo sanguinea had similar results in BLASTx searches. A genome survey of Amoebophyra sp. ex K. veneficum showed no evidence for transcript editing aside from mitochondrial transcripts. The dynein heavy chain (DHC) gene family was surveyed and of 14 transcripts only two did not use UAA, UAG, or UGA in a coding context. Overall the transcriptome displayed strong bias for A or U in third codon positions, while the tRNA genome survey showed bias against codons ending in U, particularly for amino acids with two codons ending in either C or U. Together these clues suggest contingent translation mechanisms in Amoebophyra sp. ex K. veneficum and a phylogenetically distinct instance of genetic code modification.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6394959PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0212912PLOS

Publication Analysis

Top Keywords

uaa uag
12
genetic code
8
karlodinium veneficum
8
uag uga
8
amino acids
8
contingent translation
8
genome survey
8
amoebophyra veneficum
8
codons
5
uga
5

Similar Publications

The translation of nucleotide sequences into amino acid sequences, governed by the genetic code, is one of the most conserved features of molecular biology. The standard genetic code, which uses 61 sense codons to encode one of the 20 standard amino acids and 3 stop codons (UAA, UAG, and UGA) to terminate translation, is used by most extant organisms. The protistan phylum Ciliophora (the 'ciliates') are the most prominent exception to this norm, exhibiting the grfeatest diversity of nuclear genetic code variants and evidence of repeated changes in the code.

View Article and Find Full Text PDF

Suppression of amber stop codons impairs pathogenicity in Salmonella.

FEBS Lett

December 2024

Department of Cell Biology and Molecular Genetics, The University of Maryland, College Park, MD, USA.

Translation terminates at UAG (amber), UGA (opal), and UAA (ochre) stop codons. In nature, readthrough of stop codons can be substantially enhanced by suppressor tRNAs. Stop-codon suppression also provides powerful tools in synthetic biology and disease treatment.

View Article and Find Full Text PDF

Novel Vibrational Proteins.

Anal Chem

October 2024

Britton Chance Center and MoE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei 430074, China.

Genetically encoded green fluorescent protein (GFP) and its brighter and redder variants have tremendously revolutionized modern molecular biology and life science by enabling direct visualization of gene regulated protein functions on microscopic and nanoscopic scales. However, the current fluorescent proteins (FPs) only emit a few colors with an emission width of about 30-50 nm. Here, we engineer novel vibrational proteins (VPs) that undergo much finer vibrational transitions and emit rather narrow vibrational spectra (0.

View Article and Find Full Text PDF
Article Synopsis
  • Human tRNA modifications at positions 16 and 17, known as D16/D17, are produced by the enzyme DUS1L, which was identified as essential for these modifications in glioblastoma cells.
  • Knocking out DUS1L leads to a loss of D16/D17 modifications and negatively impacts cell growth while its overexpression disrupts tRNA processing and translation.
  • Higher levels of DUS1L in glioma patients correlate with worse prognoses, highlighting its potential role in cancer biology and the need for further research into its functions.
View Article and Find Full Text PDF

The selective chemical modification of the 6-amino group of adenosine of the premature termination codon induces readthrough to produce full-length peptide in the reconstituted E. Coli translation system.

Bioorg Med Chem

September 2024

Graduate School of Pharmaceutical Sciences, Nagasaki International University, 2825-7 Huis Ten Bosch Machi, Sasebo 859-3298, Japan; RINAT Imaging, Inc., 1-1, Kurume Hundred Years Park, Kurume 839-0064, Japan. Electronic address:

Article Synopsis
  • The FT-Probe technology modifies the adenosines in mRNA PTCs, enabling readthrough in a lab setup with E. coli, leading to peptides with various amino acids incorporated at the PTC sites.
  • The study found that specifically modifying the PTCs can efficiently induce readthrough and produce full-length peptides, providing a potential strategy for overcoming issues caused by nonsense mutations in proteins.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!