Mercury (Hg) concentration in fish of the Gulf of the Mexico (GoM) is a major concern due to the importance of the GoM for U.S. fisheries. The Deepwater Horizon (DWH) oil spill in April 2010 in the northern GoM resulted in large amounts of oil and dispersant released to the water column, which potentially modified Hg bioaccumulation patterns in affected areas. We measured Hg species (methylmercury (MMHg) and inorganic Hg (IHg)) concentrations, and light (C, N and S) and Hg stable isotopes in muscle and liver tissues from tilefish (Lopholatilus chamaleonticeps) sampled in 2012 and 2013 along the shelf break of the northeastern GoM. Fish located close to the mouth of the Mississippi River (MR) and northwest of the DWH well-head (47 km) showed significantly lower Hg levels in muscle and liver than fish located further northeast of the DWH (>109 km), where 98% of tilefish had Hg levels in the muscle above US consumption advisory thresholds (50% for tilefish close to the DWH). Differences in light and Hg stable isotopes signatures were observed between these two areas, showing higher δN, and lower δHg, ΔHg and δS in fish close to the DWH/MR. This suggests that suspended particles from the MR reduces Hg bioavailability at the base of the GoM food chains. This phenomenon can be locally enhanced by the DWH that resulted in increased particles in the water column as evidenced by the marine snow layer in the sediments. On the other hand, freshly deposited Hg associated with organic matter in more oligotrophic marine waters enhanced Hg bioaccumulation in local food webs. Comparing Hg isotopic composition in liver and muscle of fish indicates specific metabolic response in fish having accumulated high levels of MMHg.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2019.02.295DOI Listing

Publication Analysis

Top Keywords

stable isotopes
12
gulf mexico
8
deepwater horizon
8
oil spill
8
water column
8
light stable
8
muscle liver
8
fish located
8
levels muscle
8
fish
6

Similar Publications

Trophic ecology in an anchialine cave: A stable isotope study.

PLoS One

January 2025

Colección Nacional de Crustáceos, Instituto de Biología, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico, Ciudad de México, Mexico.

The analysis of carbon and nitrogen stable isotopes (δ13C and δ15N) has been widely used in ecology since it allows to identify the circulation of energy in a trophic network. The anchialine ecosystem is one of the less explored aquatic ecosystems in the world and stable isotope analysis represents a useful tool to identify the routes through which energy flows and to define the trophic niches of species. Sampling and data recording was conducted in one anchialine cave, Cenote Vaca Ha, near the town of Tulum, Quintana Roo, Mexico, where seven stygobitic species endemic to the anchialine caves of the Yucatan Peninsula, plus sediment, water and vegetation samples were analyzed to determine what the main nutrient sources are.

View Article and Find Full Text PDF

Background: Although pharmacokinetics and pharmacodynamics of biotherapeutics are commonly studied through ELISAs; however, the extremely strong binding of modern antibody-based therapeutics result in background, inability of secondary antibody binding, and nonlinear response curves. The selectivity and specificity imparted through the use of liquid chromatography-targeted mass spectrometry (LC-MS/MS) allows for absolute quantitation of chosen peptides. For MODEL-AD, here we present a high-throughput workflow for absolute quantification of chimeric aducanumab from cortex and plasma of 5XFAD mice.

View Article and Find Full Text PDF

Background: Knowledge of the chemical composition of amyloid plaques and tau tangles at the earlier stages of Alzheimer's disease (AD) pathology is sparse. This is due to limited access to human brain during life and at the earlier stages of AD pathophysiology and technical limitations in quantifying amyloid and tau species at a subcellular level. Understanding the chemical composition of plaques and tangles, how rapidly they grow and what factors drive growth is important for developing and refining therapeutics.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Department of Neurology, Mayo Clinic, Rochester, MN, USA.

Background: While disease-modifying treatments that reduce Aβ have been recently approved by the FDA, the identification of novel therapeutic targets and strategies that target underlying mechanisms to delay the AD development are still needed. Abnormal brain energy homeostasis and mitochondria dysfunction are observed early in AD. Therefore, the development of treatments to restore these defects could be beneficial.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Université de Montpellier, Montpellier, France.

Background: Protein metabolism and turnover can be monitored using tracer methods, notably stable isotope labeling kinetics (SILK) based on 13C-leucine incorporation. This approach has been used in Alzheimer's disease, specifically analyzing the turnover in cerebrospinal fluid of biomarkers of interest, including amyloid peptides, leading to major pathophysiological insights (Nature medicine 12:856-861). This was achieved using immunoprecipitation mass spectrometry, which enables to track a small number of targets present in low concentration.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!