Adipogenesis is an important biological process that is linked to obesity and metabolic disorders. On the other hand, fat regeneration is crucial as a restorative approach following mastectomy or severe burn injury. Furthermore, optimizing an in-vitro model of adipogenesis, which would help in understanding the possible effects and/or side effects of fat-soluble drugs and anti-obesity remedies, in addition to the developmental studies. Epigenetic is an important factor that is involved in cellular differentiation and commitment. This study aimed at investigating the effect of DNA methylation and histone deactylases inhibitors, 5-Aza-deoxycytidine (5-Aza-dC) and Suberoylanilide hydroxamic acid (SAHA), on the adipogenic differentiation process. The two modifiers were applied according to our previously published protocol, followed by three cycles of a classical, two-step adipogenesis protocol. The cells pretreated with SAHA showed enhanced expression of the many adipogenic genes, including peroxisome proliferator-activated receptor-γ as well as the accumulation of intracytoplasmic fat as shown by oil red and Nile red staining and the secretion of adipokines, such as MCP-1 and IP-10. On contrary, 5-Aza-dC inhibited all these markers. In conclusion, adding the reported step with SAHA to the differentiation protocols could have an impact on the progress of the in-vitro fat regenerative approach. The possible role of 5-Aza-dC in the inhibition of adipogenesis can be of clinical interest and will need further characterization in the future.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.diff.2019.02.003DOI Listing

Publication Analysis

Top Keywords

suberoylanilide hydroxamic
8
hydroxamic acid
8
adipogenesis
5
paradoxical effects
4
effects epigenetic
4
epigenetic modifiers
4
modifiers 5-aza-deoxycytidine
4
5-aza-deoxycytidine suberoylanilide
4
acid adipogenesis
4
adipogenesis adipogenesis
4

Similar Publications

Acute myocardial infarction (AMI) is a critical medical condition that requires immediate attention to minimise heart damage and improve survival rates. Early identification and prompt treatment are essential to save the patient's life. Currently, the treatment strategy focuses on restoring blood flow to the myocardium as quickly as possible.

View Article and Find Full Text PDF

Sleep deprivation affects pain sensitivity by increasing oxidative stress and apoptosis in the medial prefrontal cortex of rats via the HDAC2-NRF2 pathway.

Biomed J

January 2025

Department of Anesthesiology, Perioperative and Pain Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province 450000, China; Henan Province International Joint Laboratory of Pain, Cognition and Emotion, Zhengzhou, Henan Province 450000, China. Electronic address:

Sleep is crucial for sustaining normal physiological functions, and sleep deprivation has been associated with increased pain sensitivity. The histone deacetylases (HDACs) are known to significantly regulate in regulating neuropathic pain, but their involvement in nociceptive hypersensitivity during sleep deprivation is still not fully understood. Utilizing a modified multi-platform water environment technique to establish a sleep deprivation model.

View Article and Find Full Text PDF

In vivo, microspores in the anthers follow the gametophytic development pathway, culminating in the formation of pollen grains. Conversely, in vitro, under stress treatments, microspores can be reprogrammed into totipotent cells, initiating an embryogenic pathway that produces haploid and double-haploid embryos, which are important biotechnological tools in plant breeding. There is growing evidence that epigenetic reprogramming occurs during microspore embryogenesis through DNA methylation, but less is known about the role of histone modifications.

View Article and Find Full Text PDF

Bioinspired black phosphorus delivers histone deacetylase inhibitor-induced synergistic therapy for lung cancer.

J Colloid Interface Sci

February 2025

The Fifth Affiliated Hospital, The Affiliated Panyu Central Hospital, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, The School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, Guangdong 511436, China. Electronic address:

Lung cancer remains one of the most fatal cancers worldwide, with a high incidence of metastasis and a low 5-year survival rate. Histone deacetylase inhibitors (HDACis) have shown significant potential in lung cancer treatment, but their clinical use is often hindered by poor water solubility, rapid clearance, and systemic toxicity. In this study, we developed a novel therapeutic strategy by camouflaging black phosphorus (BP) with M1 macrophage membranes (MB) and loaded HDACi suberoylanilide hydroxamic acid (SAHA) onto the camouflaged black phosphorus (MB) for targeted lung cancer therapy.

View Article and Find Full Text PDF

Transient cerebral ischaemia alters mesenteric arteries in hypertensive rats: Limited reversal despite suberoylanilide hydroxamic acid cerebroprotection.

Life Sci

December 2024

Department of Pharmacology, Therapeutic and Toxicology, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain; Institute of Neurosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain. Electronic address:

Stroke induces brain injury, especially severe in hypertensive patients, and elevates mortality rates through non-neurological complications. However, the potential effects of a transient ischaemic episode on the peripheral vasculature of hypertensive individuals remain unclear. We investigated whether transient cerebral ischaemia (90 min)/reperfusion (1 or 8 days) induces alterations in mesenteric resistance artery (MRA) properties in adult male spontaneously hypertensive rats (SHR).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!