Defective sarcomere assembly in and zebrafish mutants.

FASEB J

Department of Biochemistry and Molecular Biology, Institute of Marine and Environmental Technology, University of Maryland School of Medicine, Baltimore, Maryland, USA.

Published: May 2019

Two paralogues, and have been identified in zebrafish. Although Smyd1b function has been reported in fast muscle, its function in slow muscle and the function of Smyd1a, in general, are uncertain. In this study, we generated 2 mutant alleles and analyzed the muscle defects in and single and double mutants in zebrafish. We demonstrated that knockout of alone had no visible effect on muscle development and fish survival. This was in contrast to the mutant, which exhibited skeletal and cardiac muscle defects, leading to early embryonic lethality. The and double mutants, however, showed a stronger muscle defect compared with or mutation alone, namely, the complete disruption of sarcomere organization in slow and fast muscles. Immunostaining revealed that double mutations had no effect on myosin gene expression but resulted in a dramatic reduction of myosin protein levels in muscle cells of zebrafish embryos. This was accompanied by the up-regulation of and gene expression. Together, our studies indicate that both Smyd1a and Smyd1b partake in slow and fast muscle development although Smyd1b plays a dominant role compared with Smyd1a.-Cai, M., Han, L., Liu, L., He, F., Chu, W., Zhang, J., Tian, Z., Du, S. Defective sarcomere assembly in and zebrafish mutants.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6463926PMC
http://dx.doi.org/10.1096/fj.201801578RDOI Listing

Publication Analysis

Top Keywords

defective sarcomere
8
sarcomere assembly
8
assembly zebrafish
8
zebrafish mutants
8
muscle
8
fast muscle
8
muscle function
8
muscle defects
8
double mutants
8
muscle development
8

Similar Publications

Muscular dystrophies (MD) are a group of hereditary diseases marked by progressive muscle loss, leading to weakness and degeneration of skeletal muscles. These conditions often result from structural defects in the Dystrophin-Glycoprotein Complex (DGC), as seen in Duchenne Muscular Dystrophy (DMD) and Becker Muscular Dystrophy (BMD). Since MDs currently have no cure, research has focused on identifying potential therapeutic targets to improve patients' quality of life.

View Article and Find Full Text PDF

Abnormal development of the second heart field significantly contributes to congenital heart defects, often caused by disruptions in tightly regulated molecular pathways. , a gene encoding a protein with SET and MYND domains, is essential for heart and skeletal muscle development. Mutations in SMYD1 result in severe cardiac malformations and misregulation of expression in mammals.

View Article and Find Full Text PDF

Background: Protein-truncating mutations in the titin gene are associated with increased risk of atrial fibrillation. However, little is known about the underlying pathophysiology.

Methods: We identified a heterozygous titin truncating variant (TTNtv) in a patient with unexplained early onset atrial fibrillation and normal ventricular function.

View Article and Find Full Text PDF

Hypertrophic cardiomyopathy (HCM) is rare in childhood, but it is associated with significant morbidity and mortality. Genetic causes of HCM are mostly related to sarcomeric genes abnormalities; however, syndromic, metabolic, and mitochondrial disorders play an important role in its etiopathogenesis in pediatric patients. We here describe a new case of apparently isolated HCM due to mitochondrial assembly factor gene NDUFAF1 biallelic variants (c.

View Article and Find Full Text PDF

Contribution of hypoxia-inducible factor 1alpha to pathogenesis of sarcomeric hypertrophic cardiomyopathy.

Sci Rep

January 2025

Department of Congenital Heart Defects and Pediatric Cardiology, German Heart Center Munich, TUM University Hospital, School of Medicine & Health, Technical University of Munich, Munich, Germany.

Hypertrophic cardiomyopathy (HCM) caused by autosomal-dominant mutations in genes coding for structural sarcomeric proteins, is the most common inherited heart disease. HCM is associated with myocardial hypertrophy, fibrosis and ventricular dysfunction. Hypoxia-inducible transcription factor-1α (Hif-1α) is the central master regulators of cellular hypoxia response and associated with HCM.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!