Glycolytic shift is implicated in the pathogenesis of pulmonary arterial hypertension (PAH). It remains unknown how glycolysis is increased and how increased glycolysis contributes to pulmonary vascular remodeling in PAH. To determine whether increased glycolysis is caused by 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB3) and how PFKFB3-driven glycolysis induces vascular remodeling in PAH. PFKFB3 levels were measured in pulmonary arteries of patients and animals with PAH. Lactate levels were assessed in lungs of animals with PAH and in pulmonary artery smooth muscle cells (PASMCs). Genetic and pharmacologic approaches were used to investigate the role of PFKFB3 in PAH. Lactate production was elevated in lungs of PAH rodents and in platelet-derived growth factor-treated PASMCs. PFKFB3 protein was higher in pulmonary arteries of patients and rodents with PAH, in PASMCs of patients with PAH, and in platelet-derived growth factor-treated PASMCs. PFKFB3 inhibition by genetic disruption and chemical inhibitor attenuated phosphorylation/activation of extracellular signal-regulated kinase (ERK1/2) and calpain-2, and vascular remodeling in PAH rodent models, and reduced platelet-derived growth factor-induced phosphorylation/activation of ERK1/2 and calpain-2, collagen synthesis and proliferation of PASMCs. ERK1/2 inhibition attenuated phosphorylation/activation of calpain-2, and vascular remodeling in Sugen/hypoxia PAH rats, and reduced lactate-induced phosphorylation/activation of calpain-2, collagen synthesis, and proliferation of PASMCs. Calpain-2 inhibition reduced lactate-induced collagen synthesis and proliferation of PASMCs. Upregulated PFKFB3 mediates collagen synthesis and proliferation of PASMCs, contributing to vascular remodeling in PAH. The mechanism is through the elevation of glycolysis and lactate that results in the activation of calpain by ERK1/2-dependent phosphorylation of calpain-2.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6727156 | PMC |
http://dx.doi.org/10.1164/rccm.201812-2290OC | DOI Listing |
Sci China Life Sci
January 2025
Institute of Cardiovascular Sciences, School of Basic Medical Sciences, Peking University Health Science Center; Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, 100191, China.
Diffuse-type tenosynovial giant cell tumor (dTGCT) is a destructive but rare benign proliferative synovial neoplasm. Although surgery is currently the main treatment modality for dTGCT, the recurrence risk is up to 50%. Therefore, there is a great need for effective drugs against dTGCT with minor side effects.
View Article and Find Full Text PDFCardiol Rev
January 2025
From the Department of Internal Medicine, Division of Cardiology, Wayne State University, Detroit, MI.
Heart failure (HF) poses a significant medical challenge, affecting millions of adults in the United States. High-output heart failure (HOHF) is a distinct subtype characterized by elevated cardiac output exceeding 8 L/min or a cardiac index >4 L/min/m². Patients with HOHF often present similarly to those with heart failure with reduced ejection fraction and heart failure with preserved ejection fraction.
View Article and Find Full Text PDFCardiol Rev
January 2025
From the Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX.
The vascular endothelium and its endothelial glycocalyx contribute to the protection of the endothelial cells from exposure to high levels of sodium and help these structures maintain normal function by regulating vascular permeability due to its buffering effect. The endothelial glycocalyx has negative surface charges that bind sodium and limit sodium entry into cells and the interstitial space. High sodium levels can disrupt this barrier and allow the movement of sodium into cells and extravascular fluid.
View Article and Find Full Text PDFCrit Rev Toxicol
January 2025
Department of Life Sciences, Neural Developmental Biology Lab, National Institute of Technology, Rourkela, India.
Solid organ transplantation has emerged as a crucial intervention in the field of medicine. During transplantation, our human body perceives the organ as an exogenous entity or graft, initiating an immune reaction to eliminate it. This immune response ultimately culminates in the rejection of the graft.
View Article and Find Full Text PDFHypertension
January 2025
Clinical Research Institute, Institute of Advanced Clinical Medicine, Peking University, Beijing, China (X.Z., W.X., Y.W.).
Background: Although the information on the validation status of electronic sphygmomanometer (ES) devices in use in health care institutions and households is much more clinically relevant than that of ES models available on the market, it remains insufficient.
Methods: A national survey was conducted across all administrative regions of mainland China to assess the validation status of ESs. Fifty-eight cities were selected with stratification by municipality, provincial capital, and other cities, and health care institutions and households in each city were chosen by convenience to identify ES devices in use according to the study protocol.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!