Zero valent iron (ZVI) is recently regarded as a promising alternative for water disinfection, but still suffers from low efficiency. Herein we demonstrate that amorphous zerovalent iron microspheres (A-mZVI) exhibit both higher inactivation rate and physical removal efficiency for the disinfection of Escherichia coli than conventional crystalline nanoscale ZVI (C-nZVI) under aerobic condition. The enhanced E. coli inactivation performance of A-mZVI was mainly attributed to more reactive oxygen species (ROSs), especially free •OH, generated by the accelerated iron dissolution and molecular oxygen activation in bulk solution. In contrast, C-nZVI preferred to produce surface bound •OH, and its bactericidal ability was thus hampered by the limited physical contact between C-nZVI and E. coli. More importantly, hydrolysis of dissolved iron released from A-mZVI produced plenty of loose FeOOH to wrap E. coli, increasing the dysfunction of E. coli membrane. Meanwhile, this hydrolysis process lowered the stability of E. coli colloid and caused its rapid coagulation and sedimentation, favoring its physical removal. These findings clarify the indispensable roles of ROSs and iron corrosion products during the ZVI disinfection, and also provide a promising disinfection material for water treatment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.est.8b06499 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!