Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Reducing electromagnetic interference (EMI) across a broad radio frequency band is crucial to eliminate adverse effects of increasingly complex electromagnetic environment. Current shielding materials or methods suffer from trade-offs between optical transmittance and EMI shielding capability. Moreover, poor mechanical flexibility and fabrication complexity significantly limit their further applications in flexible electronics. In this work, an ultrathin (8 nm) and continuous doped silver (Ag) film was obtained by introducing a small amount of copper during the sputtering deposition of Ag and investigated as transparent EMI shielding components. The electromagnetic Ag shielding (EMAGS) film was realized in the form of conductive dielectric-metal-dielectric design to relieve the electro-optical trade-offs, which transmits 96.5% visible light relative to the substrate and shows an excellent average EMI shielding effectiveness (SE) of ∼26 dB, over a broad bandwidth of 32 GHz, covering the entire X, Ku, Ka, and K bands. EMI SE >30 dB was obtained by simply stacking two layers of EMAGS films together and can be further improved up to 50 dB by separating two layers with a quarter-wavelength space. The flexible EMAGS film shows a stable EMI shielding performance under repeated mechanical bending. In addition, large-area EMAGS films were demonstrated by a roll-to-roll sputtering system, proving the feasibility for mass production. The high-performance EMAGS film holds great potential for various applications in wearable electronics, healthcare devices, and electronic safety areas.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.9b00716 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!