The diversity of fungal species comprising the lung mycobiome is a reflection of exposure to environmental and endogenous filamentous fungi and yeasts. Most lung mycobiome studies have been culture-based. A few have utilized next generation sequencing (NGS). Despite the low number of published NGS studies, several themes emerge from the literature: (1) moulds and yeasts are present in the human respiratory tract, even during health; (2) the fungi present in the respiratory tract are highly variable between individuals; and (3) many diseases are accompanied by decreased diversity of fungi in the lungs. Even in patients with the same disease, different patients have been shown to harbor distinct fungal communities. Those fungal species present in any one individual may represent a patient's unique environmental exposure(s), either to species restricted to the indoor environment, for example, Penicillium, or species found in the outdoor environment such as Aspergillus, wood and vegetation colonizing fungi and plant pathogens. In addition to causing clinical fungal infections, the lung mycobiome may have inflammatory effects that can cause or worsen lung disease. Most respiratory diseases that have been studied, have been associated with decreases in fungal diversity. However, none of these diversity studies distinguish between accidental, transient fungal colonizers and true residents of the respiratory tract. Where does Aspergillus feature in the mycobiomes of the respiratory tract? Do these mycobiomes reflect the diversity of fungi in outdoor and internal environments? These intriguing questions are explored here.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6394755 | PMC |
http://dx.doi.org/10.1093/mmy/myy149 | DOI Listing |
Mycoses
January 2025
Unité de Parasitologie-Mycologie, Département de Prévention, Diagnostic et Traitement Des Infections, CHU Henri Mondor, Assistance Publique Des Hôpitaux de Paris (APHP), Creteil, France.
Background: The airways of patients with cystic fibrosis (pwCF) harbour complex fungal and bacterial microbiota involved in pulmonary exacerbations (PEx) and requiring antimicrobial treatment. Descriptive studies analysing bacterial and fungal microbiota concomitantly are scarce, especially using both culture and high-throughput-sequencing (HTS).
Objectives: We analysed bacterial-fungal microbiota and inter-kingdom correlations in two French CF centres according to clinical parameters and antimicrobial choices.
Microbiol Spectr
December 2024
University of Manchester, Manchester, United Kingdom.
Coronavirus disease 2019 (COVID-19)-associated pulmonary aspergillosis (CAPA) is a life-threatening complication in patients with severe COVID-19. Previously, acute respiratory distress syndrome in patients with COVID-19 has been associated with lung fungal dysbiosis, evidenced by reduced microbial diversity and colonization. Increased fungal burden in the lungs of critically ill COVID-19 patients is linked to prolonged mechanical ventilation and increased mortality.
View Article and Find Full Text PDFMycopathologia
December 2024
Medical Mycology Laboratory, Department of Plant Production and Microbiology, Institute for Healthcare and Biomedical Research of Alicante (ISABIAL), University Miguel Hernández, Campus of San Juan de Alicante, 03550, Alicante, Spain.
Pulmonary surfactant, the primary substance lining the epithelium of the human Lower Respiratory Tract (LRT), is rich in lipids, with dipalmitoyl-phosphatidylcholine (DPPC) being the most abundant. Although surfactants are known to have antifungal activity against some yeast species, the significant presence of species like Malassezia restricta in the lung mycobiome suggests that these yeasts may exhibit some level of lipo-tolerance or even lipo-affinity for pulmonary lipids. This study explored the affinity and tolerance of yeasts, identified as significant members of the lung microbiome, to pulmonary lipids through culture-based methods.
View Article and Find Full Text PDFFront Pharmacol
November 2024
San Raffaele Research Center, Sulmona, L'Aquila, Italy.
Moving from the earlier periods in which the lungs were believed to represent sterile environments, our knowledge on the lung microbiota has dramatically increased, from the first descriptions of the microbial communities inhabiting the healthy lungs and the definition of the ecological rules that regulate its composition, to the identification of the changes that occur in pathological conditions. Despite the limitations of lung as a microbiome reservoir due to the low microbial biomass and abundance, defining its microbial composition and function in the upper and lower airways may help understanding the impact on local homeostasis and its disruption in lung diseases. In particular, the understanding of the metabolic and immune significance of microbes, their presence or lack thereof, in health and disease states could be valuable in development of novel druggable targets in disease treatments.
View Article and Find Full Text PDFChildren (Basel)
September 2024
Department of Internal Medicine and Medical Therapeutics, University of Pavia Medical School, 27100 Pavia, Italy.
The role of the respiratory microbiome has been deeply explored for at least two decades. Its characterization using modern methods is now well-defined, and the impacts of many microorganisms on health and diseases have been elucidated. Moreover, the acquired knowledge in related fields enables patient stratification based on their risk for disease onset, and the microbiome can play a role in defining possible phenotypes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!