The thermal hydrolysis process (THP) is applied to enhance biogas production in anaerobic digestion (AD), reduce viscosity for improved mixing and dewatering and to reduce and sterilize cake solids. Large heat demands for steam production rely on dynamic effects like sludge throughput, gas availability and THP process parameters. Here, we propose a combined energy and process model suitable to describe the dynamic behaviour of THP in a full-plant context. The process model addresses interactions of THP with operational conditions covered by the AD model obeying mass continuity. Energy conservation is considered in balancing and converting various energy species dominated by thermal heat and calorific energy. The combined energy and process model was then applied on the THP at Blue Plains advanced WWTP (DC Water) to analyse the process and assess potential energy optimizations. It was found that dynamic effects like mismatched steam production and consumption, temporary gas shortages and underloaded units are responsible for energy inefficiencies with losses in electricity-production up to 29%.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2166/wst.2019.018 | DOI Listing |
Front Immunol
January 2025
Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China.
Background: Bladder cancer (BCa) is one of the most common malignancies worldwide, and its prognostication and treatment remains challenging. The fast growth of various cancer cells requires reprogramming of its energy metabolism using aerobic glycolysis as a major energy source. However, the prognostic and therapeutic value of glycolysis-related genes in BCa remains to be determined.
View Article and Find Full Text PDFFront Pharmacol
January 2025
Department of Emergency Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.
Sustained production of reactive oxygen species (ROS) and an imbalance in the antioxidant system have been implicated in the development of cardiovascular diseases (CVD), especially when combined with diabetes, hypercholesterolemia, and other metabolic disorders. Among them, NADPH oxidases (NOX), including NOX1-5, are major sources of ROS that mediate redox signaling in both physiological and pathological processes, including fibrosis, hypertrophy, and remodeling. Recent studies have demonstrated that mitochondria produce more proteins and energy in response to adverse stress, corresponding with an increase in superoxide radical anions.
View Article and Find Full Text PDFACS Phys Chem Au
January 2025
University of Duisburg-Essen, Faculty of Chemistry, Theoretical Catalysis and Electrochemistry, Universitätsstraße 5, Essen 45141, Germany.
The direct conversion of dinitrogen to nitrate is a dream reaction to combine the Haber-Bosch and Ostwald processes as well as steam reforming using electrochemistry in a single process. Regrettably, the corresponding nitrogen oxidation (NOR) reaction is hampered by a selectivity problem, since the oxygen evolution reaction (OER) is both thermodynamically and kinetically favored in the same potential range. This opens the search for the identification of active and selective NOR catalysts to enable nitrate production under anodic reaction conditions.
View Article and Find Full Text PDFInt J Nephrol Renovasc Dis
January 2025
Astellas Pharma Singapore Pte. Ltd, Singapore, Singapore.
Introduction: Limited data exist regarding treatment patterns and symptom burden of patients with anemia of chronic kidney disease (CKD) in the Middle East, South Africa, and Türkiye.
Methods: This real-world study explored clinical characteristics, symptom burden, and treatment patterns of patients with anemia of CKD living in the Middle East, South Africa, and Türkiye. Physician and patient perceptions of treatment were captured via cross-sectional surveys; patients' clinical characteristics were recorded by retrospective review of medical records.
ACS Omega
January 2025
Instituto de Física, Universidade Federal de Goiás, Goiânia, Goiás 74001-970, Brazil.
We investigate the energetic and structural properties of small lithium clusters doped with a carbon atom using a combination of computational methods, including density functional theory (DFT), diffusion quantum Monte Carlo (DMC), and the Hartree-Fock (HF) approximation. We calculate the lowest energy structures, total ground-state energies, electron populations, binding energies, and dissociation energies as a function of cluster size. Our results show that carbon doping significantly enhances the stability of lithium clusters, increasing the magnitude of the binding energy by 0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!