Multifunctional wearable e-textiles have been a focus of much attention due to their great potential for healthcare, sportswear, fitness, space, and military applications. Among them, electroconductive textile yarn shows great promise for use as next-generation flexible sensors without compromising the properties and comfort of usual textiles. However, the current manufacturing process of metal-based electroconductive textile yarn is expensive, unscalable, and environmentally unfriendly. Here we report a highly scalable and ultrafast production of graphene-based flexible, washable, and bendable wearable textile sensors. We engineer graphene flakes and their dispersions in order to select the best formulation for wearable textile application. We then use a high-speed yarn dyeing technique to dye (coat) textile yarn with graphene-based inks. Such graphene-based yarns are then integrated into a knitted structure as a flexible sensor and could send data wirelessly to a device via a self-powered RFID or a low-powered Bluetooth. The graphene textile sensor thus produced shows excellent temperature sensitivity, very good washability, and extremely high flexibility. Such a process could potentially be scaled up in a high-speed industrial setup to produce tonnes (∼1000 kg/h) of electroconductive textile yarns for next-generation wearable electronics applications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6497368 | PMC |
http://dx.doi.org/10.1021/acsnano.9b00319 | DOI Listing |
Int J Biol Macromol
December 2024
Department of Plastic and Cosmetic Surgery, Treatment Center of Burn and Trauma, Affiliated Hospital of Jiangnan University, Wuxi 214122, China. Electronic address:
The conversion of mechanical energy into electrical energy by triboelectric nanogenerators (TENG) has attracted attention in recent years, particularly in the field of wearable sensor. In this work, TEMPO-oxidized cellulose nanofibers (TOCNF) with carboxylate groups were compounded with MXene to serve as both the negative friction layer and the electrode in assembling a TENG with nylon. The synergistic effect between TOCNF and MXene was analyzed to disclose its influence on the performance of the as-prepared TENG.
View Article and Find Full Text PDFMembranes (Basel)
December 2024
School of Mechanical Engineering, Yanshan University, Qinhuangdao 066004, China.
Triboelectric nanogenerators (TENGs) have garnered significant attention due to their high energy conversion efficiency and extensive application potential in energy harvesting and self-powered devices. Recent advancements in electrospun nanofibers, attributed to their outstanding mechanical properties and tailored surface characteristics, have meant that they can be used as a critical material for enhancing TENGs performance. This review provides a comprehensive overview of the developments in electrospun nanofiber-based TENGs.
View Article and Find Full Text PDFBiosensors (Basel)
December 2024
Biomedical Engineering, School of Engineering, STEM College, RMIT University, Melbourne, VIC 3000, Australia.
This work discusses the state of the art and challenges in using wearable sensors for the monitoring of neurological patients. The authors share their experience from their participation in numerous projects, ranging from drug trials to rehabilitation intervention assessment, and identify the obstacles in the way of the integrated adoption of wearable sensors in clinical and rehabilitation practices for neurological patients. Several highly promising developments are outlined and analyzed.
View Article and Find Full Text PDFBiosensors (Basel)
December 2024
School of Science, Harbin Institute of Technology (Shenzhen), University Town, Shenzhen 518055, China.
Sarcopenia has been a serious concern in the context of an increasingly aging global population. Existing detection methods for sarcopenia are severely constrained by cumbersome devices, the necessity for specialized personnel, and controlled experimental environments. In this study, we developed an innovative wearable fabric system based on conductive fabric and flexible sensor array.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2024
Department of Flexible Sensing Technology, Institute of Chemical Engineering, Guangdong Academy of Sciences, Guangzhou 510665, China.
The global solar market is booming with a rapid growth in installed integrated devices, while photovoltaic (PV) systems are suffering from waste heat, which causes the decline of the photovoltaic conversion efficiency (PCE). This study presents the seamless integration of the ionic thermoelectric generator (iTEG) layer with traditional PV modules, facilitating the exploitation of waste heat and augmenting the overall power output. Experimental results validate the effectiveness of the iTEG, demonstrating substantial power generation and a consistent energy output.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!