Intervertebral disc degeneration (IDD) is widely considered to be one of the main causes of lower back pain, which is a chronic progressive disease closely related to inflammation, nucleus pulposus (NP) cell apoptosis and extracellular matrix (ECM) degradation. Berberine (BBR) is an alkaloid compound with an anti‑inflammatory effect and has been reported to exert therapeutic action in several inflammatory diseases, including osteoarthritis. Therefore, it was hypothesized that BBR may have a therapeutic effect on IDD through inhibition of the inflammatory response. The aim of the present study was to evaluate the influence of BBR on IDD in interleukin (IL)‑1β‑treated human NP cells in vitro. The results showed that BBR attenuated the upregulation of ECM‑catabolic factors [matrix metalloproteinase (MMP)‑3, MMP‑13, a disintegrin and metalloproteinase with thrombospondin motif (ADAMTS)‑4 and ADAMTS‑5], and the downregulation of ECM‑anabolic factors (type II collagen and aggrecan) following stimulation of the human NP cells with IL‑1β. Treatment with BBR also protected human NP cells from IL‑1β‑induced apoptosis, as determined by western blotting and flow cytometry. Mechanistically, the IL‑1β‑stimulated degradation of IκBα, and the phosphorylation and translocation of nuclear factor (NF)‑κB p65 were found to be attenuated by BBR, indicating that NF‑κB pathway activation was suppressed by BBR in the IL‑1β‑treated human NP cells. The results of the experiments revealed a therapeutic potential of BBR for the prevention or treatment of IDD.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6414164 | PMC |
http://dx.doi.org/10.3892/ijmm.2019.4105 | DOI Listing |
J Nanobiotechnology
January 2025
Krefting Research Centre, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine at Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
Extracellular vesicles (EVs) are taken up by most cells, however specific or preferential cell targeting remains a hurdle. This study aims to develop an EV that targets cells involved in inflammation, specifically those expressing intercellular adhesion molecule-1 (ICAM-1). To target these cells, we overexpress the ICAM-1 binding receptor "lymphocyte function-associated antigen-1" (LFA-1) in HEK293F cells, by sequential transfection of plasmids of the two LFA-1 subunits, ITGAL and ITGB2 (CD11a and CD18).
View Article and Find Full Text PDFBMC Vet Res
January 2025
Division of Oncology, Department of Clinical Sciences, Lund University, Lund, 22381, Sweden.
Background: Prostaglandin E2 (PGE2) is vital for embryo implantation and decidualization. Whether COX2/mPGES1/PGE2 pathway is essential for mouse and human decidualization remains unclear.
Results: This study showed that mPGES1 was highly expressed in the mouse uterus's subluminal stromal cells at the implantation site.
Mol Neurodegener
January 2025
Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA.
Gastrointestinal (GI) involvement in Lewy body diseases (LBDs) has been observed since the initial descriptions of patients by James Parkinson. Recent experimental and human observational studies raise the possibility that pathogenic alpha-synuclein (⍺-syn) might develop in the GI tract and subsequently spread to susceptible brain regions. The cellular and mechanistic origins of ⍺-syn propagation in disease are under intense investigation.
View Article and Find Full Text PDFJ Transl Med
January 2025
Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy.
Background: HER2-targeted therapies have revolutionized the treatment of HER2-positive breast cancer patients, leading to significant improvements in tumor response rates and survival. However, resistance and incomplete response remain considerable challenges. Proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibition is a novel therapeutic strategy for the management of dyslipidemia by enhancing the clearance of low-density lipoprotein cholesterol receptors, however recent evidence also shows links between PCSK9 and cancer cells.
View Article and Find Full Text PDFJ Neuroinflammation
January 2025
Department of Translational Neuroscience, Barrow Neurological Institute, Phoenix, AZ, 85013, USA.
The ApoE ε4 allele (APOEε4) is a major genetic risk factor for sporadic Alzheimer's disease (AD) and is linked to demyelination and cognitive decline. However, its effects on the lipid transporters apolipoprotein E (ApoE) and fatty acid-binding protein 7 (Fabp7), which are crucial for the maintenance of myelin in white matter (WM) during the progression of AD remain underexplored. To evaluate the effects of APOEε4 on ApoE, Fabp7 and myelin in the WM of the frontal cortex (FC), we examined individuals carrying one ε4 allele that came to autopsy with a premortem clinical diagnosis of no cognitive impairment (NCI), mild cognitive impairment (MCI) and mild to moderate AD compared with non-carrier counterparts.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!