Ovarian cancer (OC) is the gynecological malignancy type with the highest mortality rate in females. The regulatory effect of microRNAs (miRs) on their target genes serves a key role in tumor development. Therefore, in the present study, whether miR let‑7d‑5p targeting high mobility group A1 (HMGA1) regulated biological characteristics and chemosensitivity of OC cells by mediating the p53 signaling pathway was investigated. The let‑7d‑5p level was detected in OC tissues and adjacent normal tissues, followed by detection in OC cell lines SKOV3, A2780, OVCAR‑3 and CaOV3, and human normal ovarian epithelial cell line (IOSE‑80), in order to select the OC cell line for the following experiments. Subsequently, OC cells were treated with the let‑7d‑5p mimic, siHMGA1 and Tenovin‑1. The targeting association between let‑7d‑5p and HMGA1 was then examined, and the OC cell viability, migration, cycle and apoptosis were evaluated. Subsequently, the chemosensitivity of OC cells to cisplatin was verified. Finally, expression levels of let‑7d‑5p, HMGA1, p21, B‑cell lymphoma‑2 (Bcl‑2)‑associated X (Bax), p27, p53 wild‑type (p53wt), p53 mutated (p53mut), proliferating cell nuclear antigen (PCNA), cyclin‑dependent kinase 2 (CDK2), matrix metallopeptidase (MMP)2, MMP9 and Bcl‑2 were determined. As demonstrated in the results, let‑7d‑5p expression was low in OC tissues and had an increased reduction in the OVCAR‑3 cell line. HMGA1 was confirmed as a target of let‑7d‑5p, and its expression was also silenced by let‑7d‑5p. let‑7d‑5p repressed OC cell viability, migration, cell cycle progression and apoptosis, while it promoted the chemosensitivity of OC cells to cisplatin by targeting HMGA1. The expression of let‑7d‑5p, p21, Bax, p27 and p53wt was increased, while that of HMGA1, p53mut, PCNA, CDK2, MMP2, MMP9 and Bcl‑2 was reduced following cell transfection. The results in the present study provided evidence that let‑7d‑5p may suppress proliferation, and facilitate apoptosis and cisplatin chemosensitivity of OC cells by silencing HMGA1 via the p53 signaling pathway.

Download full-text PDF

Source
http://dx.doi.org/10.3892/ijo.2019.4731DOI Listing

Publication Analysis

Top Keywords

chemosensitivity cells
16
p53 signaling
12
signaling pathway
12
let‑7d‑5p
11
cell
10
ovarian cancer
8
let‑7d‑5p hmga1
8
cell viability
8
viability migration
8
cells cisplatin
8

Similar Publications

: Triple-negative breast cancer (TNBC) is the most challenging molecular subtype of breast cancer (BC) in clinical practice, associated with a worse prognosis due to limited treatment strategies and its insensitivity to conventional drugs. Zinc is an important trace element for homeostasis, and its Schiff base metal complexes have shown promise in treating advanced tumors. In this study, four new heteroleptic Zn(II) complexes (-) with Schiff bases were synthesized, characterized, and evaluated for their activity in BC cells.

View Article and Find Full Text PDF

Increased expression of branched-chain amino acid (BCAA) transaminase 1 (BCAT1) often correlates with tumor aggressiveness and drug resistance in cancer. We have recently reported that BCAT1 was overexpressed in a subgroup of T-cell acute lymphoblastic (T-ALL) samples, especially those with NOTCH1 activating mutations. Interestingly, BCAT1-depleted cells showed pronounced sensitivity to DNA-damaging agents such as etoposide; however, how BCAT1 regulates this sensitivity remains uncertain.

View Article and Find Full Text PDF

Enhancing the Chemosensitivity of MKN-45 Gastric Cancer Cells to Docetaxel via Suppression: A Novel Therapeutic Strategy.

Life (Basel)

November 2024

Faculty of Engineering and Natural Sciences, Department of Molecular Biology and Genetics, Biruni University, Istanbul 34015, Türkiye.

Purpose: Although chemotherapy is one of the standard treatments for gastric cancer, the disease's resistance mechanisms continue to limit the survival rates. (), an immune checkpoint belonging to the B7 family, is significantly overexpressed in gastric cancer. This work investigated the possibility of using suppression to improve the effectiveness of the widely used chemotherapy medication docetaxel.

View Article and Find Full Text PDF

MicroRNA Screening Reveals Upregulation of FoxO-Signaling in Relapsed Acute Myeloid Leukemia Patients.

Genes (Basel)

December 2024

Department of Hematology, Cell Therapy, Hemostaseology and Infectiology, University Hospital Leipzig, 04103 Leipzig, Germany.

: AML is an aggressive malignant disease characterized by aberrant proliferation and accumulation of immature blast cells in the patient's bone marrow. Chemotherapeutic treatment can effectively induce remission and re-establish functional hematopoiesis. However, many patients experience chemoresistance-associated relapse and disease progression with a poor prognosis.

View Article and Find Full Text PDF

: Chemoresistance is an important issue to be solved in breast cancer. It is well known that the content and morphology of collagens in tumor tissues are drastically altered following chemotherapy, and discoidin domain receptor 2 (DDR2) is a unique type of receptor tyrosine kinase (RTK). This RTK is activated by collagens, playing important roles in human malignancies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!