The transient silencing effects currently demonstrated by nonviral siRNA delivery systems limit the therapeutic utility of RNAi, but it remains a technical challenge to prolong duration of gene silencing. We have developed a T7 autogene-based hybrid mRNA/DNA system to enable long-term expression of shRNA in cytoplasm in vitro and in vivo. This hybrid mRNA/DNA system consists of T7 polymerase (T7pol) mRNA, pT7/shRNA-encoding DNA fragment and T7 autogene plasmid, and it can generate higher levels of T7pol proteins, compared to pCMV-triggering T7 autogene system, especially without the need of nuclear entry of any gene. A large amount of T7pol proteins produced are used to induce pT7-driven expression of shRNA in cytoplasm, and through cellular processing of RNA hairpins, mature siRNAs are generated for more than 13 days. We here demonstrate that a single liposomal delivery of this hybrid system leads to the long-term silencing effects in vitro and in vivo, in contrast to the conventional siRNA methods relying on the repeated administrations every 2 or 3 days. These sustainable shRNA expression properties in cytoplasm can provide an efficient strategy to address the limitations caused by shRNA-encoding plasmid DNA systems such as low nuclear entry efficiency and short-term silencing effect. The development of long-term shRNA expression system in vivo could scale down administration frequency of RNAi therapeutics in the treatment of chronic diseases, thereby increasing its clinical utility.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6395690PMC
http://dx.doi.org/10.1038/s41598-019-39407-8DOI Listing

Publication Analysis

Top Keywords

hybrid mrna/dna
12
mrna/dna system
12
shrna expression
12
nuclear entry
12
autogene-based hybrid
8
long-term shrna
8
silencing effects
8
expression shrna
8
shrna cytoplasm
8
vitro vivo
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!