Animals use adhesive secretions in highly diverse ways, such as for settlement, egg anchorage, mating, active or passive defence, etc. One of the most interesting functions is the use of bioadhesives to capture prey, as the bonding has to be performed within milliseconds and often under unfavourable conditions. While much is understood about the adhesive and biomechanical properties of the threads of other hunters such as spiders, barely anything is documented about those of the New Zealand glowworm Arachnocampa luminosa. We analysed tensile properties of the fishing lines of the New Zealand glowworm Arachnocampa luminosa under natural and dry conditions and measured their adhesion energy to different surfaces. The capture system of A. luminosa is highly adapted to the prevailing conditions (13-15 °C, relative humidity of 98%) whereby the wet fishing lines only show a bonding ability at high relative humidity (>80%) with a mean adhesive energy from 20-45 N/m and a stronger adhesion to polar surfaces. Wet threads show a slightly higher breaking strain value than dried threads, whereas the tensile strength of wet threads was much lower. The analyses show that breaking stress and strain values in Arachnocampa luminosa were very low in comparison to related Arachnocampa species and spider silk threads but exhibit much higher adhesion energy values. While the mechanical differences between the threads of various Arachnocampa species might be consequence of the different sampling and handling of the threads prior to the tests, differences to spiders could be explained by habitat differences and differences in the material ultrastructure. Orb web spiders produce viscid silk consisting of β-pleated sheets, whereas Arachnocampa has cross-β-sheet crystallites within its silk. As a functional explanation, the low tear strength for A. luminosa comprises a safety mechanism and ensures the entire nest is not pulled down by prey which is too heavy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6395680 | PMC |
http://dx.doi.org/10.1038/s41598-019-39098-1 | DOI Listing |
Comp Biochem Physiol Part D Genomics Proteomics
September 2021
Graduate School of Biotechnology and Environmental Monitoring (UFSCar), Sorocaba, SP, Brazil; Graduate School of Evolutive Genetics and Molecular Biology, Federal Univ. São Carlos (UFSCar), São Carlos, SP, Brazil. Electronic address:
Bioluminescence in Diptera is found in the Keroplatidae family, within Arachnocampininae and Keroplatinae subfamilies, with reported occurrences in Oceania, Eurasia, and Americas. Larvae of Orfelia fultoni, which inhabit stream banks in the Appalachian Mountains, emit the bluest bioluminescence among insects, using it for prey attraction, similarly to Arachnocampa spp. Although bioluminescence has a similar prey attraction function, the systems of Arachonocampininae and Keroplatinae subfamilies are morphologically/biochemically distinct, indicating different evolutionary origins.
View Article and Find Full Text PDFSci Rep
August 2019
Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil.
Blue shining fungus gnats (Diptera) had been long reported in the Waitomo caves of New Zealand (Arachnocampa luminosa Skuse), in stream banks of the American Appalachian Mountains (Orfelia fultoni Fisher) in 1939 and in true spore eating Eurasiatic Keroplatus Bosc species. This current report observes that similar blue light emitting gnat larvae also occur nearby the Betary river in the buffer zone of High Ribeira River State Park (PETAR) in the Atlantic Forest of Brazil, where the larvae were found when on fallen branches or trunks enveloped in their own secreted silk. The new species is named Neoceroplatus betaryiensis nov.
View Article and Find Full Text PDFSci Rep
February 2019
Kiel University, Zoological Institute, Functional Morphology and Biomechanics, Kiel, Germany.
Animals use adhesive secretions in highly diverse ways, such as for settlement, egg anchorage, mating, active or passive defence, etc. One of the most interesting functions is the use of bioadhesives to capture prey, as the bonding has to be performed within milliseconds and often under unfavourable conditions. While much is understood about the adhesive and biomechanical properties of the threads of other hunters such as spiders, barely anything is documented about those of the New Zealand glowworm Arachnocampa luminosa.
View Article and Find Full Text PDFPhotochem Photobiol Sci
October 2018
Graduate School of Biotechnology and Environmental Monitoring (UFSCar), Sorocaba, SP, Brazil.
Bioluminescence in Diptera is found in the family Keroplatidae, in the glowworms of the genera Arachnocampa, Orfelia and Keroplatus. Despite belonging to the same family, Arachnocampa spp. and Orfelia fultoni display morphologically and biochemically distinct bioluminescence systems: Arachnocampa spp.
View Article and Find Full Text PDFSci Rep
February 2018
Department of Biochemistry, University of Otago, Dunedin, New Zealand.
The New Zealand glowworm, Arachnocampa luminosa, is well-known for displays of blue-green bioluminescence, but details of its bioluminescent chemistry have been elusive. The glowworm is evolutionarily distant from other bioluminescent creatures studied in detail, including the firefly. We have isolated and characterised the molecular components of the glowworm luciferase-luciferin system using chromatography, mass spectrometry and H NMR spectroscopy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!