In humans, gamma-band oscillations in the primary somatosensory cortex (S1) correlate with subjective pain perception. However, functional contributions to pain and the nature of underlying circuits are unclear. Here we report that gamma oscillations, but not other rhythms, are specifically strengthened independently of any motor component in the S1 cortex of mice during nociception. Moreover, mice with inflammatory pain show elevated resting gamma and alpha activity and increased gamma power in response to sub-threshold stimuli, in association with behavioral nociceptive hypersensitivity. Inducing gamma oscillations via optogenetic activation of parvalbumin-expressing inhibitory interneurons in the S1 cortex enhances nociceptive sensitivity and induces aversive avoidance behavior. Activity mapping identified a network of prefrontal cortical and subcortical centers whilst morphological tracing and pharmacological studies demonstrate the requirement of descending serotonergic facilitatory pathways in these pain-related behaviors. This study thus describes a mechanistic framework for modulation of pain by specific activity patterns in the S1 cortex.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6395755 | PMC |
http://dx.doi.org/10.1038/s41467-019-08873-z | DOI Listing |
Neuropharmacology
December 2024
Institute of Physiology and Pathophysiology, Heidelberg University, Im Neuenheimer Feld 326, 69120 Heidelberg, Germany.
Neuropeptide Y (NPY) is the most abundant neuropeptide in the brain. It exerts anxiolytic and anticonvulsive actions, reduces stress and suppresses fear memory. While its effects at the behavioral and cellular levels have been well studied, much less is known about the modulation of physiological activity patterns at the network level.
View Article and Find Full Text PDFCogn Neurodyn
December 2024
Department of Mathematical Sciences, Indiana University Indianapolis, Indianapolis, IN 46202 USA.
Synchronization of neural activity in the gamma frequency band is associated with various cognitive phenomena. Abnormalities of gamma synchronization may underlie symptoms of several neurological and psychiatric disorders such as schizophrenia and autism spectrum disorder. Properties of neural oscillations in the gamma band depend critically on the synaptic properties of the underlying circuits.
View Article and Find Full Text PDFJ Exp Child Psychol
December 2024
Child Psychopathology Unit, Scientific Institute, 23842 Bosisio Parini, Lecco, Italy.
The ability to process auditory information is one of the foundations of the ability to appropriately acquire language. Moreover, early difficulties in basic auditory abilities have cascading effects on the appropriate wiring of brain networks underlying higher-order linguistic processes. Language impairments represent core difficulties in two different but partially overlapping disorders: developmental language disorder (DLD) and autism spectrum disorder (ASD).
View Article and Find Full Text PDFCell Rep
December 2024
Department of Anesthesiology, Huashan Hospital, Fudan University, Shanghai 200040, China. Electronic address:
Dissociation, characterized by altered consciousness and perception, underlies multiple mental disorders, but the specific neuronal subtypes involved remain elusive. In mice, we find that dissociation-inducing doses of ketamine significantly inhibit retrosplenial cortex (RSC) parvalbumin interneurons (PV-INs), enhancing delta oscillations (1-3 Hz) and delta-gamma phase-amplitude coupling (δ-γ PAC) and inducing dissociation-like behaviors. Optogenetic inhibition of RSC PV-INs triggers delta oscillations, δ-γ PAC, and some dissociation-like behaviors without ketamine.
View Article and Find Full Text PDFMov Disord
December 2024
National Engineering Research Center of Neuromodulation, School of Aerospace Engineering, Tsinghua University, Beijing, China.
Background: Abnormal rapid eye movement (REM) sleep, including REM sleep behavior disorder (RBD) and reduced REM sleep, is common in Parkinson's disease (PD), highlighting the importance of further study on REM sleep. However, the biomarkers of REM disturbances remain unknown, leading to the lack of REM-specific neuromodulation interventions.
Objective: This study aims to investigate the neurophysiological biomarkers of REM disturbance in parkinsonian patients.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!