Humans and animals construct internal models of their environment in order to select appropriate courses of action. The representation of uncertainty about the current state of the environment is a key feature of these models that controls the rate of learning as well as directly affecting choice behaviour. To maintain flexibility, given that uncertainty naturally decreases over time, most theoretical inference models include a dedicated mechanism to drive up model uncertainty. Here we probe the long-standing hypothesis that noradrenaline is involved in determining the uncertainty, or entropy, and thus flexibility, of neural models. Pupil diameter, which indexes neuromodulatory state including noradrenaline release, predicted increases (but not decreases) in entropy in a neural state model encoded in human medial orbitofrontal cortex, as measured using multivariate functional MRI. Activity in anterior cingulate cortex predicted pupil diameter. These results provide evidence for top-down, neuromodulatory control of entropy in neural state models.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6395063 | PMC |
http://dx.doi.org/10.7554/eLife.39404 | DOI Listing |
Psychiatry Clin Neurosci
January 2025
Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan.
Aim: Autistic traits exhibit neurodiversity with varying behaviors across developmental stages. Brain complexity theory, illustrating the dynamics of neural activity, may elucidate the evolution of autistic traits over time. Our study explored the patterns of brain complexity in autistic individuals from childhood to adulthood.
View Article and Find Full Text PDFAdv Mater
January 2025
Division of Intelligent and Biomechanical Systems, State Key Laboratory of Tribology in Advanced Equipment, Department of Mechanical Engineering, Tsinghua University, Haidian, Beijing, 100084, China.
Quantitative assessment for post-stroke spasticity remains a significant challenge due to the encountered variable resistance during passive stretching, which can lead to the widely used modified Ashworth scale (MAS) for spasticity assessment depending heavily on rehabilitation physicians. To address these challenges, a high-force-output triboelectric soft pneumatic actuator (TENG-SPA) inspired by a lobster tail is developed. The bioinspired TENG-SPA can generate approximately 20 N at 0.
View Article and Find Full Text PDFSci Rep
January 2025
Civil and Transportation College, Beihua University, Jilin, China.
An improved concrete structure health monitoring method based on G-S-G is proposed, which fully combines an optimized Gray-Level Co-occurrence Matrix (GLCM) with an improved Self-Organizing Map (SOM) neural network to achieve accurate and real-time concrete structure health monitoring. First of all, in order to obtain a dynamic image of the crack damage region of interest (ROI) with clear contrast and obvious target, the image acquisition system and image optimization method are used to process the damaged image. Moreover, in order to realize the accurate location of crack damage, crack damage identification research based on GLCM-SOM effectively eliminates the interference of honeycomb and pothole damage on crack damage.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Computer Science and Information Technology, Benazir Bhutto Shaheed University Lyari, Karachi, 75660, Pakistan.
Deep learning-based medical image analysis has shown strong potential in disease categorization, segmentation, detection, and even prediction. However, in high-stakes and complex domains like healthcare, the opaque nature of these models makes it challenging to trust predictions, particularly in uncertain cases. This sort of uncertainty can be crucial in medical image analysis; diabetic retinopathy is an example where even slight errors without an indication of confidence can have adverse impacts.
View Article and Find Full Text PDFJ Neurosci Methods
January 2025
College of Automation and Electronic Engineering, Qingdao University of Science and Technology, Qingdao, China.
Background: Recognition of emotion changes is of great significance to a person's physical and mental health. At present, EEG-based emotion recognition methods are mainly focused on time or frequency domains, but rarely on spatial information. Therefore, the goal of this study is to improve the performance of emotion recognition by integrating frequency and spatial domain information under multi-frequency bands.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!