Cyclic oligochalcogenides are emerging as powerful tools to penetrate cells. With disulfide ring tension maximized, selenium chemistry had to be explored next to enhance speed and selectivity of dynamic covalent exchange on the way into the cytosol. We show that diseleno lipoic acid (DiSeL) delivers a variety of relevant substrates. DiSeL-driven uptake of artificial metalloenzymes enables bioorthogonal fluorophore uncaging within cells. Binding of a bicyclic peptide, phalloidin, to actin fibers evinces targeted delivery to the cytosol. Automated tracking of diffusive compared to directed motility and immobility localizes 79 % of protein-coated quantum dots (QDs) in the cytosol, with little endosomal capture (0.06 %). These results suggest that diselenolanes might act as molecular walkers along disulfide tracks in locally denatured membrane proteins, surrounded by adaptive micellar membrane defects. Miniscule and versatile, DiSeL tags are also readily available, stable, soluble, and non-toxic.

Download full-text PDF

Source
http://dx.doi.org/10.1002/chem.201805900DOI Listing

Publication Analysis

Top Keywords

artificial metalloenzymes
8
protein-coated quantum
8
quantum dots
8
diselenolane-mediated cellular
4
cellular uptake
4
uptake efficient
4
efficient cytosolic
4
cytosolic delivery
4
delivery probes
4
probes peptides
4

Similar Publications

Due to its commercial availability and well-defined structure, the interaction between bovine protein β-lactoglobulin (βLG) and a wide variety of non-native ligands - including transition metal complexes - has been explored, but its application as an artificial metalloenzyme scaffold is limited. This protein is hypothesized to transport fatty acids and other nutrients during juvenile development, and it binds hydrophobic ligands inside a binding pocket constructed upon an 8-stranded β-barrel, called the 'calyx'. Herein, we compare the binding behavior of two rhenium(anthracene-bispyridine) ('Anth-py') tricarbonyl complexes, one with a 12‑carbon chain appended to the ligand scaffold ('Anth-py') to βLG.

View Article and Find Full Text PDF

Construction of P450 scaffold biocatalysts for the biodegradation of five chloroanilines.

J Hazard Mater

January 2025

State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 266071, China. Electronic address:

Chloroanilines represent a class of persistent and highly toxic environmental pollutants, posing significant challenges for green remediation strategies. While P450BM3 monooxygenases are renowned for their ability to catalyze the monooxidation of inert C-H bonds, costly NAD(P)H and complex electron transport systems required for P450BM3 catalysis limit their practical applications. This study pioneers the development of innovative artificial biocatalysts by strategically engineering the active site of P450BM3.

View Article and Find Full Text PDF

To efficiently capture, activate, and transform small molecules, metalloenzymes have evolved to integrate a well-organized pocket around the active metal center. Within this cavity, second coordination sphere functionalities are precisely positioned to optimize the rate, selectivity, and energy cost of catalytic reactions. Inspired by this strategy, an artificial distal pocket defined by a preorganized 3D strap is introduced on an iron-porphyrin catalyst (sc-Fe) for the CO-to-CO electrocatalytic reduction.

View Article and Find Full Text PDF

Accessing iridium Cp* as a cofactor for artificial metalloenzymes.

J Inorg Biochem

January 2025

Yusuf Hamied Department of Chemistry, Lensfield Rd, Cambridge CB2 1EW, UK.

By introducing new-to-nature transformations, artificial metalloenzymes hold great potential for expanding the biosynthetic toolbox. The chemistry of an active cofactor in these enzymes is highly dependent on how the holoprotein is assembled, potentially limiting the choice of organometallic complexes amenable to incorporation and ability of the protein structure to influence the metal centre. We have previously reported a method utilising ligand exchange as a means to introduce ruthenium-arene fragments into a four-helix bundle protein.

View Article and Find Full Text PDF

Artificial metalloenzyme assembly in cellular compartments for enhanced catalysis.

Nat Chem Biol

January 2025

State Key Laboratory of Chemo/Biosensing and Chemometrics and School of Chemistry and Chemical Engineering, Hunan University, Changsha, China.

Artificial metalloenzymes (ArMs) integrated within whole cells have emerged as promising catalysts; however, their sensitivity to metal centers remains a systematic challenge, resulting in diminished activity and turnover. Here we address this issue by inducing in cellulo liquid-liquid phase separation through a self-labeling fusion protein, HaloTag-SNAPTag. This strategy creates membraneless, isolated liquid condensates within Escherichia coli as protective compartments for the assembly of ArMs using the same fusion protein.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!