Conserved Critical Evolutionary Gene Structures in Orthologs.

J Mol Evol

Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Universidad Autónoma de Madrid, c/Nicolás Cabrera 1, 28049, Madrid, Spain.

Published: April 2019

Unravelling gene structure requires the identification and understanding of the constraints that are often associated with the evolutionary history and functional domains of genes. We speculated in this manuscript with the possibility of the existence in orthologs of an emergent highly conserved gene structure that might explain their coordinated evolution during speciation events and their parental function. Here, we will address the following issues: (1) is there any conserved hypothetical structure along ortholog gene sequences? (2) If any, are such conserved structures maintained and conserved during speciation events? The data presented show evidences supporting this hypothesis. We have found that, (1) most orthologs studied share highly conserved compositional structures not observed previously. (2) While the percent identity of nucleotide sequences of orthologs correlates with the percent identity of composon sequences, the number of emergent compositional structures conserved during speciation does not correlate with the percent identity. (3) A broad range of species conserves the emergent compositional stretches. We will also discuss the concept of critical gene structure.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00239-019-09889-1DOI Listing

Publication Analysis

Top Keywords

gene structure
12
percent identity
12
highly conserved
8
conserved speciation
8
compositional structures
8
emergent compositional
8
conserved
7
gene
5
conserved critical
4
critical evolutionary
4

Similar Publications

Background: In this study, we present an in-depth analysis of the Eurasian minnow (Phoxinus phoxinus) genome, highlighting its genetic diversity, structural variations, and evolutionary adaptations. We generated an annotated haplotype-phased, chromosome-level genome assembly (2n = 50) by integrating high-fidelity (HiFi) long reads and chromosome conformation capture data (Hi-C).

Results: We achieved a haploid size of 940 megabase pairs (Mbp) for haplome 1 and 929 Mbp for haplome 2 with high scaffold N50 values of 36.

View Article and Find Full Text PDF

Our group previously identified MS-347a () as a new fungicide candidate from the culture broth of the mutant strain, sp. KTF-0058, which had the gene inserted. This mutant strain was able to produce a sufficient supply of , allowing for its use to investigate the structure-activity relationship.

View Article and Find Full Text PDF

Plants are colonized by a vast array of microorganisms that outstrip plant cell densities and genes, thus referred to as plant's second genome or extended genome. The microbial communities exert a significant influence on the vigor, growth, development and productivity of plants by supporting nutrient acquisition, organic matter decomposition and tolerance against biotic and abiotic stresses such as heat, high salt, drought and disease, by regulating plant defense responses. The rhizosphere is a complex micro-ecological zone in the direct vicinity of plant roots and is considered a hotspot of microbial diversity.

View Article and Find Full Text PDF

Mycobacteriophages are viruses that specifically infect bacteria of the Mycobacterium genus. A substantial collection of mycobacteriophages has been isolated and characterized, offering valuable insights into their diversity and evolution. This collection also holds significant potential for therapeutic applications, particularly as an alternative to antibiotics in combating drug-resistant bacterial strains.

View Article and Find Full Text PDF

Magnetic resonance imaging (MRI) is a powerful tool to identify the structural and functional correlates of neurological illness but provides limited insight into molecular neurobiology. Using rat genetic models of autism spectrum disorder, we show that image texture-processed neurite orientation dispersion and density imaging (NODDI) diffusion MRI possesses an intrinsic relationship with gene expression that corresponds to the biophysically modeled cellular compartments of the NODDI diffusion signal. Specifically, we demonstrate that neurite density index and orientation dispersion index signals are correlated with intracellular and extracellular gene expression, respectively.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!