Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
A nanolayer of reactive propyl acrylate silane groups was deposited on a lithium surface by using a simple dipping method. The polymerization of cross-linkable silane groups with a layer of ally-ether-ramified polyethylene oxide was induced by UV light. SEM analysis revealed a good dispersion of silane groups grafted on the lithium surface and a layer of polymer of about 4 μm was obtained after casting and reticulation. The electrochemical performance for the unmodified and modified lithium electrodes were compared in symmetrical Li/LLZO/Li cells. Stable plating/stripping and low interfacial resistance were obtained when the modified lithium was utilized, indicating that the combination of silane and polymer deposition is promising to increase Li-metal/garnet contact.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6376212 | PMC |
http://dx.doi.org/10.1002/open.201900021 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!