Vaccines that confer protection through induction of adaptive T-cell immunity rely on understanding T-cell epitope (TCE) evolution induced by immune escape. This is poorly understood in tuberculosis (TB), an ancient, chronic disease, where CD4 T-cell immunity is of recognized importance. We probed 905 functionally validated, curated human CD4 T cell epitopes in 79 (Mtb) whole genomes from India. This screen resulted in identifying 64 mutated epitopes in these strains initially using a computational pipeline and subsequently verified by single nucleotide polymorphism (SNP) analysis. SNP based phylogeny revealed the 79 Mtb strains to cluster to East African Indian (EAI), Central Asian Strain (CAS), and Beijing (BEI) lineages. Eighty-nine percent of the mutated T-cell epitopes (mTCEs) identified in the 79 Mtb strains from India has not previously been reported. These mTCEs were encoded by genes with high nucleotide diversity scores including seven mTCEs encoded by six antigens in the top 10% of rapidly divergent Mtb genes encoded by these strains. Using a T cell functional assay readout, we demonstrate 62% of mTCEs tested to significantly alter CD4 T-cell IFNγ and/or IL2 secretion with associated changes in predicted HLA-DR binding affinity: the gain of function mutations displayed higher predicted HLA-DR binding affinity and conversely mutations resulting in loss of function displayed lower predicted HLA-DR binding affinity. Most mutated antigens belonged to the cell wall/cell processes, and, intermediary metabolism and respiration families though all known Mtb proteins encoded mutations. Analysis of the mTCEs in an SNP database of 5,310 global Mtb strains identified 82% mTCEs to be significantly more prevalent in Mtb strains isolated from India, including 36 mTCEs identified exclusively in strains from India. These epitopes had a significantly higher predicted binding affinity to HLA-DR alleles that were highly prevalent in India compared to HLA-DR alleles rare in India, highlighting HLA-DR maybe an important driver of these mutations. This first evidence of region-specific TCE mutations potentially employed by Mtb to escape host immunity has important implications for TB vaccine design.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6381025 | PMC |
http://dx.doi.org/10.3389/fimmu.2019.00195 | DOI Listing |
Eur J Med Chem
January 2025
School of Health Sciences, Faculty of Pharmaceutical Sciences, University of Iceland, Hofsvallagata 53, IS-107, Reykjavik, Iceland. Electronic address:
The natural bioactive products myxin and iodinin are phenazine 5,10-dioxides possessing potent anti-bacterial and anti-cancer activity in vitro. This work describes the synthesis and derivatization of new myxin and iodinin regioisomers, developed from 1,3-dihydroxyphenazine 5,10-dioxide. Compounds were evaluated for activity towards M.
View Article and Find Full Text PDFVaccine
January 2025
Department of Microbiology and Immunology, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea; Cancer Research Institute, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea; Seoul National University Medical Research Center (SNUMRC), Seoul 03080, Republic of Korea; Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea; Liver Research Institute, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea; BK21 FOUR Biomedical Science Project, Seoul National University College of Medicine, Seoul 03080, Republic of Korea. Electronic address:
Tuberculosis (TB) remains a significant global health issue due to the limited efficacy of the Bacillus Calmette-Guérin (BCG) vaccine, highlighting the need for the development of an improved TB vaccine. In this study, we created a novel TB subunit vaccine consisting of TB-secreted chorismate mutase (TBCM) (Rv1885c) and a hepatitis B virus (HBV)-derived peptide (Poly6), which elicits Type I interferon responses, both with and without an alum adjuvant. We evaluated the immunogenicity, protective efficacy, and therapeutic efficacy of this vaccine candidate in an in vivo mouse model.
View Article and Find Full Text PDFInt J Syst Evol Microbiol
January 2025
Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, PR China.
Three aerobic, pink-pigmented, Gram-negative, motile and rod-shaped bacterial strains, designated SD21, SI9 and SB2, were isolated from the phyllosphere of healthy litchis collected from three main producing sites of Guangdong Province, PR China. The 16S rRNA gene analysis showed that strains SD21 and SI9 belonged to the genus (.) with the highest similarity to DSM 19563 (98.
View Article and Find Full Text PDFMicroorganisms
December 2024
Laboratorio de Inmunoquímica II, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala S/N, Col. Casco de Santo Tomas, Delegación Miguel Hidalgo, Mexico City C.P. 11340, Mexico.
Tuberculosis (TB), caused by (), remains one of the leading infectious causes of death globally, with drug resistance presenting a significant challenge to control efforts. The interplay between type 2 diabetes mellitus (T2DM) and TB introduces additional complexity, as T2DM triples the risk of active TB and exacerbates drug resistance development. This review explores how T2DM-induced metabolic and immune dysregulation fosters the survival of , promoting persistence and the emergence of multidrug-resistant strains.
View Article and Find Full Text PDFMicroorganisms
November 2024
Department of Microbiology, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico.
Tuberculosis (TB) is one of the most common respiratory infections worldwide, and it is caused by (). employs immune evasion mechanisms that allow the disease to become chronic. Despite extensive research, the host-pathogen interaction remains incompletely understood.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!