The aim of the present study was to evaluate albumin adsorption to stainless steel (SUS), diamond-like carbon (DLC) and fluorinedoped DLC (F-DLC) films using the quartz crystal microbalance (QCM) method. Each sensor was characterized using atomic force microscopy, surface roughness and surface wettability measurements and surface free energy calculations. Adsorbed amounts of bovine serum albumin on DLC and F-DLC were significantly lower than that on SUS (p<0.05). The apparent first-order reaction rate, k, of F-DLC was significantly larger than those of SUS and DLC (p<0.05). Moreover, significantly lower total surface free energies of DLC and F-DLC influenced the albumin absorbed amounts and k. Furthermore, a clear correlation was found between the albumin absorbed amounts and the hydrogen bond component of the total surface free energy. Thus, DLC or F-DLC coating is effective for preventing protein adsorption on orthodontic appliances.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.4012/dmj.2018-060 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!