In the inner ear sensory epithelia, stereociliary hair bundles atop sensory hair cells are mechanosensory apparatus with planar polarized structure and orientation. This is established during development by the concerted action of tissue-level, intercellular planar cell polarity (PCP) signaling and a hair cell-intrinsic, microtubule-mediated machinery. However, how various polarity signals are integrated during hair bundle morphogenesis is poorly understood. Here, we show that the conserved cell polarity protein Par3 is essential for planar polarization of hair cells. Par3 deletion in the inner ear disrupted cochlear outgrowth, hair bundle orientation, kinocilium positioning, and basal body planar polarity, accompanied by defects in the organization and cortical attachment of hair cell microtubules. Genetic mosaic analysis revealed that Par3 functions both cell-autonomously and cell-nonautonomously to regulate kinocilium positioning and hair bundle orientation. At the tissue level, intercellular PCP signaling regulates the asymmetric localization of Par3, which in turn maintains the asymmetric localization of the core PCP protein Vangl2. Mechanistically, Par3 interacts with and regulates the localization of Tiam1 and Trio, which are guanine nucleotide exchange factors (GEFs) for Rac, thereby stimulating Rac-Pak signaling. Finally, constitutively active Rac1 rescued the PCP defects in -deficient cochleae. Thus, a Par3-GEF-Rac axis mediates both tissue-level and hair cell-intrinsic PCP signaling.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6421412 | PMC |
http://dx.doi.org/10.1073/pnas.1816333116 | DOI Listing |
Nat Commun
January 2025
State Key Laboratory of Membrane Biology, Peking University-Tsinghua University-National Institute of Biological Sciences Joint Graduate Program, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China.
Planar cell polarity (PCP) is an evolutionarily conserved process for development and morphogenesis in metazoans. The well-organized polarity pattern in cells is established by the asymmetric distribution of two core protein complexes on opposite sides of the cell membrane. The Van Gogh-like (VANGL)-PRICKLE (PK) pair is one of these two key regulators; however, their structural information and detailed functions have been unclear.
View Article and Find Full Text PDFNat Commun
January 2025
Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
Vangl is a planar cell polarity (PCP) core protein essential for aligned cell orientation along the epithelial plane perpendicular to the apical-basal direction, which is important for tissue morphogenesis, development and collective cell behavior. Mutations in Vangl are associated with developmental defects, including neural tube defects (NTDs), according to human cohort studies of sporadic and familial cases. The complex mechanisms underlying Vangl-mediated PCP signaling or Vangl-associated human congenital diseases have been hampered by the lack of molecular characterizations of Vangl.
View Article and Find Full Text PDFChemistry
January 2025
Shiv Nadar University, CHEMISTRY, NH 91, TEHSIL DADRI, GAUSTAM BUDHA NAGAR, 201314, GREATER NOIDA, INDIA.
Since death is an inevitable phenomenon, exploring cell deaths holds importance. During this process, the cellular microenvironment within cells such as pH, polarity, viscosity etc alter. One such microenvironment, viscosity elevates during different cell deaths.
View Article and Find Full Text PDFSoft Matter
January 2025
Institute for X-Ray Physics, University of Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany.
The eukaryotic cytoskeleton is an intricate network of three types of mechanically distinct biopolymers - actin filaments, microtubules and intermediate filaments (IFs). These filamentous networks determine essential cellular functions and properties. Among them, microtubules are important for intracellular transport and establishing cell polarity during migration.
View Article and Find Full Text PDFInt J Mol Med
March 2025
Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China.
The present study investigated the mechanisms by which aquaporin 1 (AQP1) influences microglial polarization and neuroinflammatory processes in traumatic brain injury (TBI). A model of TBI was generated in AQP1‑knockout mice to assess the impact of AQP1 deletion on inflammatory cytokine release, neuronal damage and cognitive function. Immunofluorescence, reverse transcription‑quantitative PCR, western blotting and enzyme‑linked immunosorbent assay were employed to evaluate pro‑inflammatory and anti‑inflammatory markers.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!