Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: Ultrasonography is a fast and patient-friendly modality to assess cartilage thickness. However, inconsistent results regarding accuracy have been reported. Therefore, we asked what are (1) the accuracy, (2) reproducibility, and (3) reliability of ultrasonographic cartilage thickness measurement using contrast-enhanced micro-CT for validation?
Methods: A series of 50 cartilage-bone plugs were harvested from fresh bovine and porcine joints. Ultrasonic cartilage thickness was determined using an A-mode, 20-MHz hand-held ultrasonic probe with native (1580 m/s) and adjusted speed of sound (1696 m/s). All measurements were performed by two observers at two different occasions. Angle of insonation was controlled by tilting the device and recording minimal thickness. Retrieval of exact location for measurement was facilitated by aligning the circular design of both cartilage-bone plug and ultrasonic device. There was no soft tissue interference between cartilage surface and ultrasonic probe. Ground truth measurement was performed using micro-CT with iodine contrast agent and a voxel size of 16 μm. The mean cartilage thickness was 1.383 ± 0.402 mm (range, 0.588-2.460 mm).
Results: Mean accuracy was 0.074 ± 0.061 mm (0.002-0.256 mm) for native and 0.093 ± 0.098 mm (0.000-0.401 mm) for adjusted speed of sound. Bland-Altman analysis showed no systematic error. High correlation was found for native and adjusted speed of sound with contrast-enhanced micro-CT (both r = 0.973; p < 0.001). A perfect agreement for reproducibility (intraclass correlation coefficient [ICC] 0.992 and 0.994) and reliability (ICC 0.993, 95% confidence interval 0.990-0.995) was found.
Conclusions: Ultrasonic cartilage thickness measurement could be shown to be highly accurate, reliable, and reproducible. The A-mode ultrasonic cartilage thickness measurement is a fast and patient-friendly modality which can detect early joint degeneration and facilitate decision making in joint preserving surgery.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6391750 | PMC |
http://dx.doi.org/10.1186/s13018-019-1099-8 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!