Introduction: In a cancer-free environment in the adult, the skeleton continuously undergoes remodeling. Bone-resorbing osteoclasts excavate erosion cavities, and bone-depositing osteoblasts synthesize osteoid matrix that forms new bone, with no net bone gain or loss. When metastatic breast cancer cells invade the bone, this balance is disrupted. Patients with bone metastatic breast cancer frequently suffer from osteolytic bone lesions that elicit severe bone pain and fractures. Bisphosphonate treatments are not curative. Under ideal circumstances, osteoblasts would synthesize new matrix to fill in erosion cavities caused by osteoclasts, but this is not what occurs. Our prior evidence demonstrated that osteoblasts are diverted from laying down bone matrix to producing cytokines that facilitate breast cancer cell maintenance in late-stage disease. Here, we have new evidence to suggest that there are subpopulations of osteoblasts in the tumor niche as evidenced by their protein marker expression that have distinct roles in tumor progression in the bone.

Methods: Tumor-bearing tibia of mice was interrogated by immunofluorescent staining for the presence of osteoblasts and alterations in niche protein expression. De-identified tissue from patients with bone metastatic breast cancer was analyzed for osteoblast subpopulations via multi-plex immunofluorescent staining. Effects of breast cancer cells on osteoblasts were recapitulated in vitro by osteoblast exposure to breast cancer-conditioned medium. Triple-negative and estrogen receptor-positive breast cancer proliferation, cell cycle, and p21 expression were assessed upon contact with "educated" osteoblasts.

Results: A subpopulation of osteoblasts was identified in the bone tumor microenvironment in vivo of both humans and mice with bone metastatic breast cancer that express RUNX2/OCN/OPN but is negative for IL-6 and alpha-smooth muscle actin. These tumor "educated" osteoblasts (EOs) have altered properties compared to "uneducated" osteoblasts and suppress both triple-negative and estrogen receptor-positive breast cancer cell proliferation and increase cancer cell p21 expression. EO effects on breast cancer proliferation were mediated by NOV and decorin. Importantly, the presence of EO cells in the tibia of mice bearing tumors led to increased amounts of alkaline phosphatase and suppressed the expression of inflammatory cytokines in vivo.

Conclusions: Our work reveals that there is a subpopulation of osteoblasts in the bone tumor microenvironment that demonstrate a functional role in retarding breast cancer cell growth.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6391840PMC
http://dx.doi.org/10.1186/s13058-019-1117-0DOI Listing

Publication Analysis

Top Keywords

breast cancer
44
metastatic breast
20
cancer cell
16
breast
12
cancer
12
cancer cells
12
bone
12
bone tumor
12
tumor microenvironment
12
bone metastatic
12

Similar Publications

Background: Cognitive dysfunction emerges as a manifestation of reduced estrogen levels following ovariectomy in an individual. However, the conventional use of estrogen replacement therapy could increase the risk of breast cancer and thromboembolism. Icariin is a natural compound that has been reported to be a neuroprotective agent against dementia.

View Article and Find Full Text PDF

Drug Development.

Alzheimers Dement

December 2024

The TT & WF Chao Center for BRAIN and Houston Methodist Neal Cancer Center, Houston Methodist Hospital, Houston, TX, USA.

Background: Global epidemiological studies involving over nine million participants have shown a 35% lower incidence of Alzheimer's Disease (AD) in older cancer survivors compared to those without a history of cancer. This inverse relationship, consistent across recent studies with methodological controls, suggests that cancer itself, rather than cancer treatments, may offer protective factors against AD. This insight opens avenues for novel therapeutic strategies targeting early AD by harnessing cancer-associated protective factors.

View Article and Find Full Text PDF

ENPP-1 is a transmembrane enzyme involved in nucleotide metabolism, and its overexpression is associated with various cancers, making it a potential therapeutic target and biomarker for early tumor diagnosis. Current detection methods for ENPP-1 utilize a colorimetric probe, , which has significant limitations in sensitivity. Here, we present probe , the first nucleic acid-based chemiluminescent probe designed for rapid and highly sensitive detection of ENPP-1 activity.

View Article and Find Full Text PDF

Background: The metal oxide nanoparticles possess unique properties such as biological compatibility, superior reactivity, and capacity to develop reactive oxygen species, due to this they have drawn significant interest in cancer treatment. The various MONPs such as cerium oxide, Copper oxide, Iron oxide, Titanium dioxide, and Zinc oxide have been investigated for several types of cancers including brain, breast, cervical, colon, leukemia, liver, lung, melanoma, ovarian, and prostate cancers. However, traditional physiochemical synthetic methods for MONPs commonly include toxic materials, a major concern that raises questions regarding their biocompatibility and safety.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!