Phosphatidylinositol 3'-OH kinase (PI3K)-Akt and transcription factor NF-κB are important molecules involved in the regulation of cell proliferation, apoptosis, and oncogenesis. Both PI3K-Akt and Nuclear Factor-kappaB (NF-κB) are involved in the development and progression of prostate cancer, however, the crosstalk and molecules connecting these pathway remains unclear. A multilevel system representation of the PI3K-Akt and NF-κB pathways was constructed to determine which signaling components contribute to adaptive behavior and coordination. In silico experiments conducted using PI3K-Akt and NF-κB, mathematical models were modularized using biological functionality and were validated using a cell culture system. Our analysis demonstrates that a component representing the IκB kinase (IKK) complex can coordinate these two pathways. It is expected that interruption of this molecule could represent a potential therapeutic target for prostate cancer.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6468646 | PMC |
http://dx.doi.org/10.3390/cells8030201 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!