Background: Several studies have investigated cardiac dose reduction when utilizing the deep inspiration breath hold (DIBH) technique in patients undergoing radiotherapy for left-sided breast cancer. This paper aims to recommend potential selection criteria based on a retrospective single institute study of free breathing (FB) and DIBH computed tomography (CT) simulation planning scans.
Methods: Dosimetric comparisons were performed retrospectively for 20 patients correlating the dose reduction and patient anatomical factors (anatomical variation of chest shape, chest wall separation, total lung volume (TLV) and others).
Results: Paired t-tests demonstrated significant cardiac dose reduction for most patients but not all. Minimal cardiac dose reduction was observed for three patients using their DIBH plan, with one patient receiving a higher dose. Linear regression analysis identified a positive correlation between the patient's TLV (on the FB CT simulation scan) and the magnitude of dosimetric benefit received (0.4045 R²).
Conclusion: The TLV measured on a FB plan could potentially be utilised to predict cardiac exposure and assist with patient selection for DIBH. This is important in resource allocation, as DIBH may be unnecessarily recommended for some patients with little dosimetric benefit.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6406815 | PMC |
http://dx.doi.org/10.3390/cancers11020259 | DOI Listing |
J Neurosurg Pediatr
January 2025
1Department of Neurosurgery, Queensland Children's Hospital, Brisbane; and.
Objective: Ventricular shunt insertion is a common procedure in pediatric neurosurgical practice. In many areas of medicine there is a push toward rationalization of healthcare resources and a reduction in low-value tests or procedures. The intraoperative sampling of CSF at the time of shunt insertion is one traditional aspect of care that has not been rigorously evaluated.
View Article and Find Full Text PDFJ Neurosurg
January 2025
1Department of Neurosurgery, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russian Federation.
Objective: The purpose of this study was to present a newly designed 3D-printed personalized model (3D PPM) of a radiofrequency needle guide with a maxillary fixation for gasserian ganglion (GG) puncture.
Methods: Implementation of 3D CT-guided radiofrequency therapy of the GG with and without use of 3D PPM was analyzed. The following parameters were assessed: radiation time, dose area product, air kerma reference point, pain severity during the puncture needle insertion, prosopalgia regression degree (according to visual analog scale) and the severity of facial numbness (according to the Barrow Neurological Institute scale) in the early postoperative period, and postpuncture complications.
Med Oncol
January 2025
Department of Medical Pharmacology, Medical Faculty, Atatürk University, Erzurum, Turkey.
Limited advancements in managing malignant brain tumors have resulted in poor prognoses for glioblastoma (GBM) patients. Standard treatment involves surgery, radiotherapy, and chemotherapy, which lack specificity and damage healthy brain tissue. Boron-containing compounds, such as boric acid (BA), exhibit diverse biological effects, including anticancer properties.
View Article and Find Full Text PDFMol Neurobiol
January 2025
Department of Nutrition, Faculty of Veterinary Medicine, Firat University, Elazig, Turkey.
Demyelination is commonly observed in neurodegenerative disorders, including multiple sclerosis (MS). Biotin supplementation is known to stabilize MS progression. To reduce the effective dose of biotin, we synthesized a new and superior form of biotin, a complex of magnesium ionically bound to biotin (MgB) and compared its dose-dependent effect with biotin alone after inducing demyelination using lysolecithin (LPC) in rats.
View Article and Find Full Text PDFAAPS PharmSciTech
January 2025
Department of Pharmaceutics, Faculty of Pharmacy, Hamdard University, Karachi, Pakistan.
The pharmacokinetics of renally eliminated antibiotics can be influenced by changes associated with renal function and development in a growing subject. Little is known about the effects of renal insufficiency on the pharmacokinetics of meropenem in pediatric subjects. The aim of this study was to develop a physiologically based pharmacokinetic (PBPK) model of meropenem for pediatric patients that can be used to optimize meropenem dosing in pediatric patients with renal impairment (RI).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!