Background: Several studies have investigated cardiac dose reduction when utilizing the deep inspiration breath hold (DIBH) technique in patients undergoing radiotherapy for left-sided breast cancer. This paper aims to recommend potential selection criteria based on a retrospective single institute study of free breathing (FB) and DIBH computed tomography (CT) simulation planning scans.

Methods: Dosimetric comparisons were performed retrospectively for 20 patients correlating the dose reduction and patient anatomical factors (anatomical variation of chest shape, chest wall separation, total lung volume (TLV) and others).

Results: Paired t-tests demonstrated significant cardiac dose reduction for most patients but not all. Minimal cardiac dose reduction was observed for three patients using their DIBH plan, with one patient receiving a higher dose. Linear regression analysis identified a positive correlation between the patient's TLV (on the FB CT simulation scan) and the magnitude of dosimetric benefit received (0.4045 R²).

Conclusion: The TLV measured on a FB plan could potentially be utilised to predict cardiac exposure and assist with patient selection for DIBH. This is important in resource allocation, as DIBH may be unnecessarily recommended for some patients with little dosimetric benefit.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6406815PMC
http://dx.doi.org/10.3390/cancers11020259DOI Listing

Publication Analysis

Top Keywords

dose reduction
16
cardiac dose
12
left-sided breast
8
breast cancer
8
patient selection
8
selection criteria
8
deep inspiration
8
inspiration breath
8
breath hold
8
dosimetric benefit
8

Similar Publications

Objective: Ventricular shunt insertion is a common procedure in pediatric neurosurgical practice. In many areas of medicine there is a push toward rationalization of healthcare resources and a reduction in low-value tests or procedures. The intraoperative sampling of CSF at the time of shunt insertion is one traditional aspect of care that has not been rigorously evaluated.

View Article and Find Full Text PDF

Objective: The purpose of this study was to present a newly designed 3D-printed personalized model (3D PPM) of a radiofrequency needle guide with a maxillary fixation for gasserian ganglion (GG) puncture.

Methods: Implementation of 3D CT-guided radiofrequency therapy of the GG with and without use of 3D PPM was analyzed. The following parameters were assessed: radiation time, dose area product, air kerma reference point, pain severity during the puncture needle insertion, prosopalgia regression degree (according to visual analog scale) and the severity of facial numbness (according to the Barrow Neurological Institute scale) in the early postoperative period, and postpuncture complications.

View Article and Find Full Text PDF

Limited advancements in managing malignant brain tumors have resulted in poor prognoses for glioblastoma (GBM) patients. Standard treatment involves surgery, radiotherapy, and chemotherapy, which lack specificity and damage healthy brain tissue. Boron-containing compounds, such as boric acid (BA), exhibit diverse biological effects, including anticancer properties.

View Article and Find Full Text PDF

Dose-Dependent Effect of a New Biotin Compound in Hippocampal Remyelination in Rats.

Mol Neurobiol

January 2025

Department of Nutrition, Faculty of Veterinary Medicine, Firat University, Elazig, Turkey.

Demyelination is commonly observed in neurodegenerative disorders, including multiple sclerosis (MS). Biotin supplementation is known to stabilize MS progression. To reduce the effective dose of biotin, we synthesized a new and superior form of biotin, a complex of magnesium ionically bound to biotin (MgB) and compared its dose-dependent effect with biotin alone after inducing demyelination using lysolecithin (LPC) in rats.

View Article and Find Full Text PDF

The pharmacokinetics of renally eliminated antibiotics can be influenced by changes associated with renal function and development in a growing subject. Little is known about the effects of renal insufficiency on the pharmacokinetics of meropenem in pediatric subjects. The aim of this study was to develop a physiologically based pharmacokinetic (PBPK) model of meropenem for pediatric patients that can be used to optimize meropenem dosing in pediatric patients with renal impairment (RI).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!