Tomato chlorotic spot virus (TCSV) and groundnut ringspot virus (GRSV) share several genetic and biological traits. Both of them belong to the genus (family ), which is composed by viruses with tripartite RNA genome that infect plants and are transmitted by thrips (order Thysanoptera). Previous studies have suggested several reassortment events between these two viruses, and some speculated that they may share one of their genomic segments. To better understand the intimate evolutionary history of these two viruses, we sequenced the genomes of the first TCSV and GRSV isolates ever reported. Our analyses show that TCSV and GRSV isolates indeed share one of their genomic segments, suggesting that one of those viruses may have emerged upon a reassortment event. Based on a series of phylogenetic and nucleotide diversity analyses, we conclude that the parental genotype of the M segment of TCSV was either eliminated due to a reassortment with GRSV or it still remains to be identified.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6410062PMC
http://dx.doi.org/10.3390/v11020187DOI Listing

Publication Analysis

Top Keywords

tomato chlorotic
8
chlorotic spot
8
spot virus
8
virus tcsv
8
groundnut ringspot
8
ringspot virus
8
virus grsv
8
reassortment event
8
share genomic
8
genomic segments
8

Similar Publications

Disease complex associated with begomoviruses infecting squash and cucumber in Saudi Arabia.

Cell Mol Biol (Noisy-le-grand)

November 2024

Plant Protection Department, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh, 11451, Saudi Arabia.

During the field visits in growing season of 2022 in Dammam Region of Saudi Arabia, begomovirus-like symptoms including leaf curling, leaf cupping, leaf distortion, vein thickening and reduced leaf size were observed in squash and cucumber fields. Twenty-five samples were collected from each crop and PCR amplification was done using general diagnostic begomovirus primers (AC-1048/AV-494 and Begomo I/Begomo II). The obtained results showed desired sized amplified DNA fragments (550 bp and 1.

View Article and Find Full Text PDF
Article Synopsis
  • - Vigna unguiculata, or cowpea, is a significant vegetable crop in Sanya, Hainan, China, but it faces threats from viral diseases like CPMMV, BCMV, and CPPV2 which negatively impact its growth and photosynthesis.
  • - Weeds in the area, such as Sesbania cannabina and Physalis angulata, can act as virus hosts, complicating the situation for cowpea cultivation.
  • - In July 2022, researchers collected these weeds, extracted their RNA, and identified a viral DNA sequence similar to CPMMV, indicating a link between the weeds and the viral disease affecting cowpeas.
View Article and Find Full Text PDF

Plant rhabdoviruses cause considerable economic losses and are a threat to the agriculture of plants. Two novel virus isolates belonging to the family are identified by high-throughput sequencing (HTS) in Russian eggplant cultivars grown in the Volga river delta region for the first time. The phylogenetic inference of L protein (polymerase) shows that these virus isolates belong to Alphanucleorhabdovirus physostegia (-PhCMoV), and their minus-sense RNA genomes have the typical gene order 3'-nucleocapsid (N)-X protein (X)-phosphoprotein (P)-Y protein (Y)-matrix protein (M)-glycoprotein (G)-polymerase (L)-5' observed in some plant-infecting alphanucleorhabdoviruses.

View Article and Find Full Text PDF

Limited research in Saudi Arabia has devolved into the prevalence and genetic diversity of begomoviruses. Utilizing Illumina MiSeq sequencing, we obtained 21 full-length begomovirus sequences (2.7-2.

View Article and Find Full Text PDF

Background: Pospiviroids, members of the genus Pospiviroid, can cause severe diseases in tomato and other Solanaceae crops, causing considerable economic losses worldwide. Six pospiviroids including potato spindle tuber viroid (PSTVd), tomato chlorotic dwarf viroid (TCDVd), tomato planta macho viroid (TPMVd), Columnea latent viroid (CLVd), pepper chat fruit viroid (PCFVd), and tomato apical stunt viroid (TASVd) are regulated in many countries and organizations. Rapid, accurate detection is thus crucial for controlling the spread of these pospiviroids.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!