Pre-mRNA cleavage and polyadenylation is an essential step for almost all mRNA in eukaryotes. The -elements around the poly(A) sites, however, are very diverse among different organisms. We characterized the poly(A) signals of seven different species, and compared them with that of four well-studied organisms. We found that ciliates do not show any dominant poly(A) signal; a triplet (UAA) and tetramers (UAAA and GUAA) are dominant in diatoms and red alga, respectively; and green alga uses UGUAA as its poly(A) signal. Spikemoss and moss use conserved AAUAAA signals that are similar to other land plants. Our analysis suggests that the first two bases (NN in NNUAAA) are likely degenerated whereas UAAA appears to be the core motif. Combined with other published results, it is suggested that the highly conserved poly(A) signal AAUAAA may be derived from UAA with an intermediate, putative UAAA, following a pathway of UAA→UAAA→AAUAAA.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6413133PMC
http://dx.doi.org/10.3390/ijms20040958DOI Listing

Publication Analysis

Top Keywords

polya signal
12
polya
5
genome-wide comparative
4
comparative analyses
4
analyses polyadenylation
4
polyadenylation signals
4
signals eukaryotes
4
eukaryotes origin
4
origin aauaaa
4
signal
4

Similar Publications

Inflammation is a complex host response to harmful infections or injuries, playing both beneficial and detrimental roles in tissue regeneration. Notably, clinical dentinogenesis associated with caries development occurs within an inflammatory environment. Reparative dentinogenesis is closely linked to intense inflammation, which triggers the recruitment and differentiation of dental pulp stem cells (DPSCs) into the dentin lineage.

View Article and Find Full Text PDF

elements are primate-specific retrotransposon sequences that comprise ∼11% of human genomic DNA. sequences contain an internal RNA polymerase III promoter and the resultant RNA transcripts mobilize by a replicative process termed retrotransposition. retrotransposition requires the Long INterspersed Element-1 (LINE-1) open reading frame 2-encoded protein (ORF2p).

View Article and Find Full Text PDF

Optimization of Conditions for Production of Soluble Poly(A)-Polymerase for Biotechnological Applications.

Biology (Basel)

January 2025

Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences (ICBFM SB RAS), 8, Lavrentiev Avenue, Novosibirsk 630090, Russia.

Poly(A) polymerase (PAP 1) from is the primary enzyme responsible for synthesizing poly(A) tails on RNA molecules, signaling RNA degradation in bacterial cells. In vitro, PAP 1 is used to prepare libraries for RNAseq and to produce mRNA vaccines. However, PAP 1's toxicity and instability in low-salt buffers complicate its expression and purification.

View Article and Find Full Text PDF

Solution-phase nucleic acid reaction weaves interfacial barriers on unmodified electrodes: Just-in-time generation of sensor interface for convenient and highly sensitive bioassays.

Talanta

January 2025

The Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China. Electronic address:

Electrochemical bioassays that rely on sensor interfaces based on immobilized DNA probes often encounter challenges such as complex fabrication processes and limited binding efficiency. In this study, we developed a novel electrochemical bioassay that bypasses the need for probe immobilization by employing a solution-phase nucleic acid reaction to create interfacial barriers on unmodified electrodes, enabling rapid, just-in-time sensor interface formation. Specifically, a 3'-phosphorylated recognition probe was used to identify the target microRNA-21 (miR-21), followed by target recycling facilitated by duplex-specific nuclease (DSN), which resulted in extensive hydrolysis of the recognition probe into DNA fragments with 3'-hydroxyl ends.

View Article and Find Full Text PDF

Cellular senescence is an essentially irreversible cell cycle arrest associated with upregulated inflammatory responses that contribute to various pathological and physiological processes, including aging, cancer, and cancer prevention. However, the underlying mechanisms are not fully understood. Here, we show that the downregulation of CNOT3, a subunit of the CCR4-NOT complex that deadenylates mRNA poly(A) tails, promotes cellular senescence in subpopulation of A549 human non-small cell lung cancer cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!