The Effects of Swimming Training in Cold Water on Antioxidant Enzyme Activity and Lipid Peroxidation in Erythrocytes of Male and Female Aged Rats.

Int J Environ Res Public Health

Laboratory of Experimental Biochemistry and Molecular Biology, IRCCS Istituto Ortopedico Galeazzi, Via Riccardo Galeazzi, 4, 20161 Milano, Italy.

Published: February 2019

The aim of this study was to verify whether eight-week-long swimming exercise training would evaluate the level of selected indicators of the pro-oxidant/antioxidant status in response to cold water in comparison with swimming under thermoneutral conditions in sedentary male and female elderly rats. The exercise-trained groups swam four min/day and five days a week during eight weeks of housing. Exercise was performed by swimming in glass tanks containing tap water maintained according to group at 5 °C and 36 °C. At the end of treatment (48 h after the last session), all rats were anaesthetized. The level of chosen biomarkers of oxidative stress and antioxidant enzyme activity was determined in the red blood cells and plasma. The results of study show that female rats seem to be better adapted to changing thermal conditions of the environment, developing not only morphological, but also antioxidant, defense mechanisms, mainly in the form of increased erythrocyte superoxide dismutase (SOD) activity and glutathione (GSH) concentration to restore the pro-oxidant/oxidant balance of the organism. Significantly higher concentrations of GSH were observed in the female rats of the group swimming in cold water (by 15.4% compared to the control group and by 20.5% in relation to the group of female rats swimming at 36 °C). In the group exposed to swimming training exercise in cold water, a significantly higher activity of SOD1 (by 13.4%) was found compared to the control group. On the other hand, the organs of ageing male rats show a reduced capacity to increase the metabolic response to low temperatures compared to female ones. In addition, it was demonstrated that cold exposure leads to an increase in lipid peroxidation in tissues. On the other hand, the repeated exposure to low levels of oxidative stress may result in some adaptive changes in organisms that help them to resist stress-induced damage.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6406484PMC
http://dx.doi.org/10.3390/ijerph16040647DOI Listing

Publication Analysis

Top Keywords

cold water
16
female rats
12
swimming training
8
antioxidant enzyme
8
enzyme activity
8
lipid peroxidation
8
male female
8
oxidative stress
8
compared control
8
control group
8

Similar Publications

Unlabelled: The effects of high hydrostatic pressure (HHP) (400-650 MPa) and holding temperature (25-50 °C) in thermally assisted HHP processing on multi-scale structure of starch (granule, crystalline and molecular), techno-functional properties, and digestibility of sorghum starch (SS) were evaluated. Response surface methodology has verified that the process impact on the modification of SS was dependent primarily on the pressure level. As HHP increased, processed SS progressively lost their granular structure and Maltese cross, indicating gradual structural disorder within the granules.

View Article and Find Full Text PDF

Synergistic effect of scattered rare metals on Pt/CeO for propane oxidative dehydrogenation with CO.

RSC Adv

January 2025

State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University (NPU), Shaanxi Joint Laboratory of Graphene Xi'an 710072 China

The oxidative dehydrogenation of propane with CO (CO-ODP) is a green industrial process for producing propene. Cerium oxide-supported platinum-based (Pt/CeO) catalysts exhibit remarkable reactivity toward propane and CO due to the unique delicate balance of C-H and C[double bond, length as m-dash]O bond activation. However, the simultaneous activation and cleavage of C-H, C-C, and C-O bonds on Pt/CeO-based catalysts may substantially impede the selective activation of C-H bonds during the CO-ODP process.

View Article and Find Full Text PDF

The beneficial effects of priming technology are aimed at the promotion of growth and development and stress tolerance in plants. Different seed pre-treatment and vegetative priming approaches (osmo-, chemical, physical, hormonal, redox treatments) increase the level of nitric oxide (NO) being an active contributor to growth regulation and defence responses. On the other hand, seed pre-treatment or vegetative priming mainly with the NO donor, sodium nitroprusside (SNP) helps to mitigate different abiotic stresses like salinity, cold, drought, excess metals.

View Article and Find Full Text PDF

Purification mechanism of emergent aquatic plants on polluted water: A review.

J Environ Manage

January 2025

Heilongjiang Province Key Laboratory of Geographical Environment Monitoring and Spatial Information Service in Cold Regions, School of Geographical Sciences, Harbin Normal University, Harbin, 150025, China; Heilongjiang Province Collaborative Innovation Center of Cold Region Ecological Safety, Harbin, 150025, China. Electronic address:

Nitrogen and phosphorus inputs to surface water bodies lead to a decline in water quality and a disruption in the balance of aquatic ecosystems. Emergent aquatic plants were widely used for their high efficiency in removing nitrogen and phosphorus from surface waters. However, there was a lack of systematic analyses on the purification of surface waters by emergent aquatic plants, and the mechanism of differences in nitrogen and phosphorus removal by different plants needs to be further revealed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!