Hyperthermia-increasing temperature of cancerous tissue for a short period of time-is considered as an effective treatment for various cancer types such as malignant bone tumors. Superparamagnetic and ferromagnetic particles have been studied for their hyperthermic properties in treating various types of cancers. The activation of magnetic nanoparticles by an alternating magnetic field is currently being explored as a technique for targeted therapeutic heating of different tumors and is being studied as an adjuvant to conventional chemotherapy and radiation therapy. In the case of bone cancers, to increase the efficiency of treatment in the hyperthermia therapy, employed materials should support bone regeneration as well. Magnetite is one of the most attractive magnetic nanoceramics used in hyperthermia application. However, biocompatibility and bioactivity of this material have raised questions. There is a high demand for extremely efficient hyperthermia materials which are equally biocompatible to non-tumor cells and tissues. We report the development of a biocompatible and bioactive material with desirable magnetic properties that show excellent hyperthermia properties and can be used for destruction of the cancerous tissue in addition to supporting tissue regeneration for treatment of bone tumors. In the current study, iron (Fe)-containing HT nanostructured material was prepared, and its biocompatibility, bioactivity, and hyperthermia abilities were studied. The developed materials showed effective hyperthermic properties with increased biocompatibility as compared to magnetite.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.msec.2019.01.038 | DOI Listing |
Biomed Phys Eng Express
January 2025
School of Engineering and Computing, University of the West of Scotland, University of the West of Scotland - Paisley Campus, Paisley PA1 2BE, UK, City, Paisley, PA1 2BE, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND.
Cancer grade classification is a challenging task identified from the cell structure of healthy and abnormal tissues. The partitioner learns about the malignant cell through the grading and plans the treatment strategy accordingly. A major portion of researchers used DL models for grade classification.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Oncode Institute, Hubrecht Institute-Royal Netherlands Academy of Arts and Science, Utrecht 3584 CT, The Netherlands.
Matrigel/BME, a basement membrane-like preparation, supports long-term growth of epithelial 3D organoids from adult stem cells [T. Sato , , 262-265 (2009); T. Sato , , 1762-1772 (2011)].
View Article and Find Full Text PDFInt J Radiat Biol
January 2025
Chungbuk National University College of Medicine, Cheongju, Republic of Korea.
Purpose: We aimed to identify the transcriptomic signatures of soft tissue sarcoma (STS) related to radioresistance and establish a model to predict radioresistance.
Materials And Methods: Nine STS cell lines were cultured. Adenosine triphosphate-based viability was determined 5 days after irradiation with 8 Gy of X-rays in a single fraction.
PLoS One
January 2025
Department of Neurosurgery, Osaka University Graduate School of Medicine, Osaka, Japan.
Background: Glioblastoma is characterized by neovascularization and diffuse infiltration into the adjacent tissue. T2*-based dynamic susceptibility contrast (DSC) MR perfusion images provide useful measurements of the biomarkers associated with tumor perfusion. This study aimed to distinguish infiltrating tumors from vasogenic edema in glioblastomas using DSC-MR perfusion images.
View Article and Find Full Text PDFJ Craniofac Surg
January 2025
Department of Plastic and Reconstructive Surgery, Saitama Medical University International Medical Center.
This study aimed to develop a novel reconstruction method for segmental mandibulectomy. In the authors' opinion, reconstruction of the anterior border of the mandibular ramus using a double-arm vascularized fibular flap is important to prevent deformity due to buccal depression and the accumulation of food debris, thereby eliminating masticatory dead space that cannot be filled with prostheses such as implants or dentures. Using conventional reconstruction plates, the reconstructed bone positioned at the anterior border of the mandibular ramus required either fixing with only 1 screw or using 2 plates for stable fixation, making it difficult to position the plates stably.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!