Preparation and controlled drug release ability of the poly[N-isopropylacryamide-co-allyl poly(ethylene glycol)]-b-poly(γ-benzyl-l-glutamate) polymeric micelles.

Mater Sci Eng C Mater Biol Appl

The Key Laboratory of Food Colloids and Biotechnology, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, PR China. Electronic address:

Published: May 2019

The polymeric micelles were prepared through a copolymerization of allyl polyethylene glycol (APEG) and N-isopropylacrylamide in the presence of 2-aminoethanethiol (AET), followed by a ring opening polymerization of γ-benzyl-l-glutamate N-carboxyanhydride (BLG-NCA). Doxorubicin (DOX) as a model drug was covalently conjugated into the core of micelles via hydrazone bonds. The drug loading capacity could reach up to 15% with drug encapsulation efficiency of 80%. The pH/thermo sensitivities were observed in the process of in vitro drug release. The DOX-loaded micelles exhibited accelerated drug release behaviors in an acidic condition, and enhanced therapeutic efficacy was observed. Furthermore, the cytotoxicity of micelles against Hela and 3T3 cells was evaluated before and after drug loading. The DOX-loaded micelles showed strong cytotoxic activity to the cancer cells. But the blank micelles showed non-cytotoxicity. Therefore, the thermo/pH dual-responsive polymeric micelles have a promising future applied as a controlled drug delivery system for anticancer drugs.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.msec.2019.01.056DOI Listing

Publication Analysis

Top Keywords

drug release
12
polymeric micelles
12
drug
8
controlled drug
8
micelles
8
drug loading
8
dox-loaded micelles
8
preparation controlled
4
release ability
4
ability poly[n-isopropylacryamide-co-allyl
4

Similar Publications

Attachment of Hydrogel Patches to Eye Tissue through Gel Transfer using Flexible Foils.

ACS Appl Mater Interfaces

January 2025

Department of Microsystems Engineering (IMTEK), Laboratory for Chemistry & Physics of Interfaces (CPI), Albert Ludwigs Universität Freiburg, Georges Köhler Allee 103, 79110 Freiburg, Germany.

Glaucoma, a leading cause of blindness, demands innovative and effective treatments that surpass the limitations of current drug and surgical interventions to lower intraocular pressure. This study describes the generation of cell-repellent hydrogel patches, their deposition on the ocular surface, and a photoinduced chemical binding between the patches and the collagens of the eye. The hydrophilic and protein-repellent hydrogel patch is composed of a copolymer made from dimethylacrylamide and a comonomer unit with anthraquinone moieties.

View Article and Find Full Text PDF

Cystine-Modified Lignin-Copper Coordination Nanocarriers Improve the Therapeutic Efficacy of Tyrosine Kinase Inhibition via Cuproptosis.

ACS Appl Mater Interfaces

January 2025

Department of Radiology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, No. 651 Dongfeng Road East, Guangzhou, Guangdong 510060, P. R. China.

The clinical application of tyrosine kinase inhibitors (TKIs) is rapidly growing and has emerged as a cornerstone in the treatment of both solid tumors and hematologic malignancies. However, resistance to TKI targets and disease progression remain inevitable. Nanocarrier-mediated delivery has emerged as a promising strategy to overcome the limitations of the TKI application.

View Article and Find Full Text PDF

Bacterial infections pose a serious threat to human health. For many years, there has been a search for materials that would inhibit their development. It was decided to take a closer look at various elastomeric materials with the addition of chitosan.

View Article and Find Full Text PDF

Innovative Applications of Bacteria and Their Derivatives in Targeted Tumor Therapy.

ACS Nano

January 2025

Institute of Nanobiomaterials and Immunology & Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, School of Life Sciences, Taizhou University, Zhejiang Taizhou 318000, China.

Despite significant progress in cancer treatment, traditional therapies still face considerable challenges, including poor targeting, severe toxic side effects, and the development of resistance. Recent advances in biotechnology have revealed the potential of bacteria and their derivatives as drug delivery systems for tumor therapy by leveraging their biological properties. Engineered bacteria, including , , and , along with their derivatives─outer membrane vesicles (OMVs), bacterial ghosts (BGs), and bacterial spores (BSPs)─can be loaded with a variety of antitumor agents, enabling precise targeting and sustained drug release within the tumor microenvironment (TME).

View Article and Find Full Text PDF

Triethylamine-mediated protonation-deprotonation unlocks dual-drug self assembly to suppress breast cancer progression and metastasis.

Proc Natl Acad Sci U S A

February 2025

Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, People's Republic of China.

Carrier-free nanomedicines exhibited significant potential in elevating drug efficacy and safety for tumor management, yet their self assembly typically relied on chemical modifications of drugs or the incorporation of surfactants, thereby compromising the drug's inherent pharmacological activity. To address this challenge, we proposed a triethylamine (TEA)-mediated protonation-deprotonation strategy that enabled the adjustable-proportion self assembly of dual drugs without chemical modification, achieving nearly 100% drug loading capacity. Molecular dynamic simulations, supported by experiment evidence, elucidated the underlying self-assembly mechanism.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!