A thin surface coating intended for medical devices such as implants where local drug release is enabled using near infrared light (NIR) as an external stimulus has been developed. The delivery system consists of a thin Poly (N-isopropylacrylamide)-co-acrylamide (PNIPAAm-AAm) polymer layer with incorporated gold nanorods (GNRs). The aspect ratio of the GNRs were chosen to absorb NIR light, thus fitting the biological window of low tissue absorption, to locally heat the polymeric layer to initiate a drug release. Hence, controlled drug delivery from a surface within tissue orchestrated from outside the body is achievable. Composition of the PNIPAAm-AAm co-polymer was systematically varied to find a suitable phase transition temperature for in vivo applications. Differential scanning calorimetry (DSC) analysis showed that PNIPAAm-AAm containing 10% acrylamide had an appropriate phase transition temperature of 42 °C. As visualized by scanning electron microscopy (SEM), the surface coating consisted of 200 nm uniform polymer layer. Quartz crystal microbalance with dissipation monitoring (QCM-D) analysis coupled with in situ NIR irradiation demonstrated a dramatic shift in frequency that was attributed to mass being released from the surface upon irradiation. This mass release correlated well with the drug release profile as determined using UV/VIS spectroscopy with phenol as a model drug. In addition, proof-of-concept of the drug-delivery system was demonstrated by releasing the antibiotic vancomycin to eradicate Staphylococcus epidermidis bacteria in culture.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.msec.2019.01.015 | DOI Listing |
J Mater Chem B
January 2025
Department of Forensic Science, School for Bio Engineering and Bio Sciences, Lovely Professional University, Phagwara, Punjab, India.
The development of pH-directed nanoparticles for tumor targeting represents a significant advancement in cancer biology and therapeutic strategies. These innovative materials have the ability to interact with the unique acidic microenvironment of tumors. They enhance drug delivery, increase therapeutic efficacy, and reduce systemic toxicity.
View Article and Find Full Text PDFBiomater Sci
January 2025
School of Chemistry, Chemical Engineering and Life Science, Hubei Key Laboratory of Nanomedicine for Neurodegenerative Diseases, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China.
To enhance the antibacterial efficacy of tildipirosin against (S.A.) infections, optimized solid lipid nanoparticles loaded with tildipirosin (SLN-TD) were developed, using docosanoic acid (DA), octadecanoic acid (OA), hexadecanoic acid (HA), and tetradecanoic acid (TA) as lipid components.
View Article and Find Full Text PDFTher Deliv
January 2025
Institute of Pharmaceutical Research, GLA University, Mathura, India.
Aim: Development and optimization of raloxifene hydrochloride loaded lipid nanocapsule hydrogel for transdermal delivery.
Method: A 3 Box-Behnken Design and numerical optimization was performed to obtain the optimized formulation. Subsequently, the optimized raloxifene hydrochloride loaded lipid nanocapsule was developed using phase inversion temperature and characterized for physicochemical properties.
Chem Sci
January 2025
School of Biomedical Engineering, Shanghai Jiao Tong University Shanghai 200240 China
Intracellular viscosity is a critical microenvironmental factor in various biological systems, and its abnormal increase is closely linked to the progression of many diseases. Therefore, precisely controlling the release of bioactive molecules in high-viscosity regions is vital for understanding disease mechanisms and advancing their diagnosis and treatment. However, viscosity alone cannot directly trigger chemical reactions.
View Article and Find Full Text PDFIran J Basic Med Sci
January 2025
Departments of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
Objectives: Migraine, a serious neurological disease that affects millions of people worldwide, is one of the most considerable burdens on the healthcare system and has significant economic implications. Even though various treatment methods are available, including medication, lifestyle changes, and behavioral therapy, many migraine sufferers do not receive adequate relief or experience intolerable side effects. Hence, the present review aims to evaluate the nanoformulation regarding migraine therapy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!