The aim of this study was to determine the cytocompatibility of poly (l-lactide) (PLLA) scaffolds fabricated using co-rotating twin screw extrusion technique and functionalized with different concentrations of nano-hydroxyapatite (nHAp). The efforts were aimed on the designing bioactive scaffolds improving the viability and metabolic activity of human adipose-derived multipotent stromal cells (hASCs). The in vitro study was designed to determine the optimal nHAp concentration, based on analysis of hASCs morphology, adhesion rate, as well as metabolic and proliferative potential. Initially, the PLLA filled with three different concentrations of the nHAp were tested i.e. 5%, 10% and 15 wt%. The obtained results indicated that the 10 wt% nHAp in the PLLA (10% nHAp/PLLA) matrices improved the adhesion and proliferation of the hASCs, what was in good agreement with the results of tensile properties of the composites. Further, we performed profound studies regarding the cytotoxicity of 10% nHAp/PLLA. The analysis included the evaluation of the biomaterial influence on viability, apoptosis-related markers expression profile and mitochondrial function. The cytocompatibility of 10% nHAp/PLLA scaffolds toward the hASCs was confirmed. The hASCs propagated on 10% nHAp/PLLA were more viable then those propagated on the plain PLLA. The level of pro-apoptotic markers, i.e. caspase-3 and Bax in cultures on 10% nHAp/PLLA was significantly decreased. Obtained results correlated with higher mitochondrial membrane potential of hASCs in those cultures. The obtained composites may improve therapeutic potential of hASCs via directing their adhesion, enhancing proliferation and viability as well as increasing mitochondrial potential, thus may find potential application in tissue engineering.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.msec.2018.12.099DOI Listing

Publication Analysis

Top Keywords

10% nhap/plla
20
human adipose-derived
8
stromal cells
8
hascs
8
cells hascs
8
potential hascs
8
10%
6
potential
5
nhap/plla
5
approach modification
4

Similar Publications

Three dimensional (3D) printed polylactic acid with nano-hydroxyapatite doped with europium(III) ions (nHAp/PLLA@Eu) composite for osteochondral defect regeneration and theranostics.

Mater Sci Eng C Mater Biol Appl

May 2020

Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Okolna 2, PL-50-422 Wroclaw, Poland; Centre for Advanced Materials and Smart Structures, Polish Academy of Sciences, Okolna 2, 50-950 Wroclaw, Poland. Electronic address:

In the current research previously developed composites composed from poly (l-lactide) (PLLA) and nano-hydroxyapatite (10 wt% nHAp/PLLA) were functionalized with different concentrations of europium (III) (Eu). The aim of this study was to determine whether Eu ions doped within the 10 wt% nHAp/PLLA scaffolds will improve the bioactivity of composites. Therefore, first set of experiments was designed to evaluate the effect of Eu ions on morphology, viability, proliferation and metabolism of progenitor cells isolated from adipose tissue (hASC).

View Article and Find Full Text PDF

New approach to modification of poly (l-lactic acid) with nano-hydroxyapatite improving functionality of human adipose-derived stromal cells (hASCs) through increased viability and enhanced mitochondrial activity.

Mater Sci Eng C Mater Biol Appl

May 2019

Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Okolna 2, PL-50-422 Wroclaw, Poland; Centre for Advanced Materials and Smart Structures, Polish Academy of Sciences, Okolna 2, 50-950 Wroclaw, Poland. Electronic address:

The aim of this study was to determine the cytocompatibility of poly (l-lactide) (PLLA) scaffolds fabricated using co-rotating twin screw extrusion technique and functionalized with different concentrations of nano-hydroxyapatite (nHAp). The efforts were aimed on the designing bioactive scaffolds improving the viability and metabolic activity of human adipose-derived multipotent stromal cells (hASCs). The in vitro study was designed to determine the optimal nHAp concentration, based on analysis of hASCs morphology, adhesion rate, as well as metabolic and proliferative potential.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!