Infectious diarrhea caused by the food borne pathogen, Campylobacter jejuni, is a major threat to public health worldwide leads high incidence of child mortality each year. In the present study, hydrothermal synthesis of Silver-Graphene-TiO nanocomposites along with TiO, TiO-Graphene and TiO-silver nanocomposites was done and the samples were characterized using X-ray diffraction (XRD), tunneling electron microscopy (TEM) and UV-Vis Spectroscopy. Effect of silver and graphene addition on the broad spectrum antibacterial ability of TiO was studied under visible light. Moreover, the effects on bacterial survival, membrane integrity, cellular motiltiy and biofilm formation of C. jejuni were also evaluated. A synergetic effect of silver and graphene on Silver-Graphene-TiO nanocomposites was observed as indicated by its increased visible light sensitivity and enhanced antibacterial activity under visible light compared to its parent derivatives. Silver-Graphene-TiO composites effectively reduced growth and caused leakage of protein and DNA from C. jejuni cell. Atomic Force Microscopy was used to confirm bacterial cell damage. Besides, it also reduced motillity, hydrophobicity and autoaggregation of C. jejuni and showed excellent inhibition of biofilm formation. Furthermore, no significant cytotoxicity of synthesized nanoparticles was observed in human cell lines. We propose that Silver-Graphene-TiO composites can be used as effective antimicrobial agents to control the spread of C. jejuni by preventing both bacterial growth and biofilm formation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.msec.2018.12.087 | DOI Listing |
ACS Chem Neurosci
January 2025
Department of Physiology, Faculty of Medicine, Firat University, Elazığ 23200, Türkiye.
This study evaluates acetylcholinesterase (AChE) enzyme activity levels, oxidative stress parameters, histopathological findings, and serum melatonin levels in rat brain tissue. 32 male Wistar Albino rats were randomly divided into four groups: Control, Light, Dark, Dim light ( = 8 each group). After a 30 day experiment, brain tissues were collected to measure AChE, glutathione S-transferase (GST), glutathione (GSH), and malondialdehyde (MDA) levels and conduct histopathological analyses.
View Article and Find Full Text PDFACS Appl Bio Mater
January 2025
Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran.
Burns carry a large surface area, varying in shapes and depths, and an elevated risk of infection. Regardless of the underlying etiology, burns pose significant medical challenges and a high mortality rate. Given the limitations of current therapies, tissue-engineering-based treatments for burns are inevitable.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea.
Photobiomodulation (PBM) is considered an effective and safe therapeutic modality in supporting the treatment of complications from a global pandemic-diabetes. In this study, PBM therapy is investigated to accelerate wound healing in diabetic mice (DM), under the combined biological effects of red light from a red organic light-emitting diode (ROLED) and near-infrared (NIR) light from an NIR conversion film (NCF) with dispersed CuInS/ZnS quantum dots (QDs). The QD concentration and the NCF structure were optimized to maximize the optical properties and mechanical stability.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
School of Materials Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, P. R. China.
The emerging step (S)-scheme heterojunction systems became a powerful strategy in promoting photogenerated charge separation while maintaining their high redox potentials. However, the weak interfacial interaction limits the charge migration rate in S-scheme heterojunctions. Herein, we construct a unique S-scheme carbon nitride (CN) homojunction with boron (B)-doped CN and phosphorus (P)-doped CN (B-CN/P-CN) for hydrogen peroxide (HO) photosynthesis.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30, South Puzhu Road, Nanjing 211816, China.
Due to the low bioavailability and insolubility of high molecular weight polycyclic aromatic hydrocarbons (HMW-PAHs) in aqueous solutions, their degradation efficiency is significantly limited in wastewater treatment and environmental remediation. To address this challenge, we designed oil-in-water (O/W) macroemulsion (ME) bioreactors with mixed surfactants (Tween-80 and Triton X-100), -butanol, corn oil, and () to enhance the degradation efficiency of pyrene. Owing to the higher solubility of pyrene in MEs, it could be easily adsorbed onto hydrophobic groups on the cell surface.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!