Several coliform species other than Escherichia coli are often associated with and possibly responsible for acute and chronic diarrheal disease. Recent evidence suggests that non- Escherichia coli coliforms may be capable of colonizing the human intestine and producing enterotoxin(s) in high-yield. Whether these organisms are newly capable of causing disease because of infestation with extrachromosomal factors mediating pathogenicity or simply because of inherent pathogenic capabilities that have gone unrecognized, they pose a potential health hazard. Food, medical, and public health microbiologists should be aware that the non- E. coli coliforms contaminating foods may be potential enteropathogens. This possibility may make determination of their pathogenic capabilities even more important than identification of their taxonomic characteristics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.4315/0362-028X-42.2.161 | DOI Listing |
PLoS One
January 2025
Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, United States of America.
Urinary tract infections (UTIs) are among the most common bacterial infections of both dogs and humans, with most caused by uropathogenic Escherichia coli (UPEC). Recurrent UPEC infections are a major concern in the treatment and management of UTIs in both species. In humans, the ability of UPECs to form intracellular bacterial communities (IBCs) within urothelial cells has been implicated in recurrent UTIs.
View Article and Find Full Text PDFACS Synth Biol
January 2025
Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, P. R. China.
The fusion expression of deoxyribonucleic acid (DNA) replication-related proteins with nucleotide deaminase enzymes promotes random mutations in bacterial genomes, thereby increasing genetic diversity among the population. Most previous studies have focused on cytosine deaminase, which produces only C → T mutations, significantly limiting the variety of mutation types. In this study, we developed a fusion expression system by combining DnaG (RNA primase) with adenine deaminase TadA-8e (DnaG-TadA) in , which is capable of rapidly introducing A → G mutations into the genome, resulting in a 664-fold increase in terms of mutation rate.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Division of Evolution, Infection and Genomics, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9NT, United Kingdom.
The bacterial type 6 secretion system (T6SS) is a toxin-injecting nanoweapon that mediates competition in plant- and animal-associated microbial communities. Bacteria can evolve de novo resistance against T6SS attacks, but resistance is far from universal in natural communities, suggesting key features of T6SS weaponry may act to limit its evolution. Here, we combine ecoevolutionary modeling and experimental evolution to examine how toxin type and multiplicity in attackers shape resistance evolution in susceptible competitors.
View Article and Find Full Text PDFArch Microbiol
January 2025
Department of Critical Care Medicine, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, 637000, PR China.
Vibrio parahaemolyticus propels itself through liquids using a polar flagellum and efficiently swarms across surfaces or viscous environments with the aid of lateral flagella. H-NS plays a negative role in the swarming motility of V. parahaemolyticus by directly repressing the transcription of the lateral flagellin gene lafA.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
High soluble protein expression in heterologous hosts is crucial for various research and applications. Despite considerable research on the impact of codon usage on expression levels, the relationship between protein sequence and expression is often overlooked. In this study, a novel connection between protein expression and sequence is uncovered, leading to the development of SRAB (Strength of Relative Amino Acid Bias) based on AEI (Amino Acid Expression Index).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!