Blue- and green-emitting hydrophobic carbon dots: preparation, optical transition, and carbon dot-loading.

Nanotechnology

College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, People's Republic of China.

Published: June 2019

In the past decade, hydrophobic fluorescent carbon dots (OCDs) have received little attention, and its potential application and light transition mechanism is seldom explored. Here we report a novel one-step approach for synthesizing blue- and green-emitting hydrophobic fluorescent carbon dots (OCD and OCD) by calcinating with the uses of citric acid and hexadecylamine as initial reactants. The optimal conditions for preparing OCD and OCD were obtained by using the Taguchi L25 (3) orthogonal array. The highest quantum yield and product yield of OCDs reached 80.2% and 57.1%, respectively, larger than those from most of all the known reports. The fluorescent stability of OCD and OCD was excellent under UV irradiation (30 W) for days. The luminescent color of OCDs showed a great dependence on reaction conditions. It is easier to get OCD via a reaction kept at a high temperature for a long time. The optical transition mechanism was studied for the two kinds of color OCDs, and therefore proposed in combination with their optical properties and surface groups. The reason for light transition is probably related to an appropriate critical ratio and surface density of the C=O and N-H bond in the surface structure of the product. For the OCD the concentration matching ratio of N-H and C=O bonds in the surface structure of the green-emitting product is approximately between d/2 and 3d/2, where d is a fixed constant. Lower than or higher than this critical ratio range, the product emits blue light. Based on their high fluorescence quantum efficiency and the advantages mentioned above, these OCDs were then respectively used for preparing hydrophobic fluorescent carbon dot-loading liposomes and acrylate films, both exhibiting a perfect performance with no fluorescence quenching.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1361-6528/ab0b14DOI Listing

Publication Analysis

Top Keywords

carbon dots
12
hydrophobic fluorescent
12
fluorescent carbon
12
ocd ocd
12
blue- green-emitting
8
green-emitting hydrophobic
8
optical transition
8
carbon dot-loading
8
light transition
8
transition mechanism
8

Similar Publications

Bioimaging probes based on carbon dots (CDs) can become a useful replacement for existing commercial probes, benefiting clinical diagnostics. While the development of dual-mode CD-based probes for magnetic resonance imaging (MRI), which provides the ability for photoluminescence (PL) detection at the same time, is ongoing, several challenges have to be addressed. First, most of the CD-based probes still emit at shorter wavelengths (blue/green spectral range), which is harmful to biological objects or have very low PL intensity in the biological window of tissue transparency (red/near-infrared spectral range).

View Article and Find Full Text PDF

Carbon dots derived from organic drug molecules with improved therapeutic effects and new functions.

Nanoscale

January 2025

Department of Chemistry and Shanghai Key Laboratory of Molecular and Catalysis and Innovative Materials, Fudan University, Shanghai 200438, P. R. China.

Carbon dots (CDs) are new types of fluorescent nanomaterials with particle diameters of 1∼10 nm and have excellent photoluminescence (PL) properties, good biocompatibility, simple preparation methods and numerous raw materials; consequently, they are promising in the biomedical field. In recent years, to overcome drug resistance and toxic side effects of traditional organic drugs, the synthesis of CDs from drug molecules has become an effective strategy, which produces CDs with the same therapeutic effects as the raw drugs and even possessing new properties. At present, many CDs derived from organic drugs have been developed, which can be classified according to their sources such as antibiotics, anti-inflammatory drugs, and guanidine drugs.

View Article and Find Full Text PDF

The mouth cavity is the second most complex microbial community in the human body. It is composed of bacteria, viruses, fungi, and protozoa. An imbalance in the oral microbiota may lead to various conditions, including caries, soft tissue infections, periodontitis, root canal infections, peri-implantitis (PI), pulpitis, candidiasis, and denture stomatitis.

View Article and Find Full Text PDF

Engineering biocompatible carbon dots nano-enzymes hydrogel for efficient antioxidative and anti-inflammatory treatment of dry eye disease.

J Control Release

January 2025

Guangdong Provincial Engineering Research Center of Molecular Imaging, Guangdong-Hong Kong-Macao University Joint Laboratory of Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, Guangdong, China; Zhuhai Hospital of Integrated Traditional Chinese & Western Medicine, Zhuhai, Guangdong, China. Electronic address:

Dry eye disease (DED) is a complex and multifactorial ocular surface disease. Reactive oxygen species (ROS) are of pivotal importance in the inflammatory processes and biological dysfunction associated with DED. In this study, an injectable hydrogel, designated as OHACDgel, was created by combining oxidized HA-containing aldehyde groups (OHA) and gelation (gel) via dynamic covalent linkages of the hydrazine bonds, is employed as the carrier, while polyethylene imine-functionalized carbon dots (PEI-CD) can form dynamic chemical bonds with the hydrogel, thus prolonging the retention time of the ocular.

View Article and Find Full Text PDF

Arginine-derived carbon dots with antioxidant activity for treating aflatoxin B1-induced liver injury via Nrf2/Keap1 and NLRP3 pathways in mice.

Life Sci

January 2025

School of Life Sciences, Anhui University, Hefei, Anhui, China; Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei 230601, Anhui, China; Anhui Province Joint Construction Discipline Key Laboratory of Nanobody Technology, Hefei, China; Anhui Healcurer Heath Biotech Co., Ltd. - Anhui University Joint Postgraduate Training Base of Anhui Province, Hefei, China. Electronic address:

Aflatoxin B1 (AFB1) is a prevalent contaminant in food and feed matrices, known for its hepatotoxic effects. Its metabolic breakdown generates reactive oxygen species (ROS), leading to oxidative stress and subsequent liver damage. Mitigating oxidative stress is, therefore, essential for ameliorating the hepatocellular damage and systemic toxicity caused by AFB1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!