Activation of Ca2.1 voltage-gated calcium channels is facilitated by preceding calcium entry. Such self-modulatory facilitation is thought to contribute to synaptic facilitation. Using knockin mice with mutated Ca2.1 channels that do not facilitate (Ca IM-AA mice), we surprisingly found that, under conditions of physiological calcium and near-physiological temperatures, synaptic facilitation at hippocampal CA3 to CA1 synapses was not attenuated in Ca IM-AA mice and facilitation was paradoxically more prominent at two cerebellar synapses. Enhanced facilitation at these synapses is consistent with a decrease in initial calcium entry, suggested by an action-potential-evoked Ca2.1 current reduction in Purkinje cells from Ca IM-AA mice. In wild-type mice, Ca2.1 facilitation during high-frequency action potential trains was very small. Thus, for the synapses studied, facilitation of calcium entry through Ca2.1 channels makes surprisingly little contribution to synaptic facilitation under physiological conditions. Instead, Ca2.1 facilitation offsets Ca2.1 inactivation to produce remarkably stable calcium influx during high-frequency activation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6597251PMC
http://dx.doi.org/10.1016/j.celrep.2019.01.114DOI Listing

Publication Analysis

Top Keywords

synaptic facilitation
16
calcium entry
12
im-aa mice
12
facilitation
11
ca21 channels
8
ca21 facilitation
8
ca21
7
calcium
6
mice
5
role ca21
4

Similar Publications

Botulinum toxin (BoNT), the most potent substance known to humans, likely evolved not to kill but to serve other biological purposes. While its use in cosmetic applications is well known, its medical utility has become increasingly significant due to the intricacies of its structure and function. The toxin's structural complexity enables it to target specific cellular processes with remarkable precision, making it an invaluable tool in both basic and applied biomedical research.

View Article and Find Full Text PDF

Reactive astrogliosis and acidosis, common features of epileptogenic lesions, express a high level of astrocytic acid-sensing ion channel-1a (ASIC1a), a proton-gated cation channel and key mediator of responses to neuronal injury. This study investigates the role of astrocytic ASIC1a in cognitive impairment following epilepsy. Status epilepticus (SE) in C57/BL6 mice was induced using lithium-pilocarpine; the impact of ASIC1a on astrocytes was assessed using rAAV-ASIC1a-NC and rAAV-ASIC1a-shRNA, injected in the CA3 region of mice.

View Article and Find Full Text PDF

The disease's trajectory of Alzheimer disease (AD) is associated with and negatively correlated to hippocampal hyperexcitability. Here, we show that during the asymptomatic stage in a knockin (KI) mouse model of Alzheimer disease (APP; APPKI), hippocampal hyperactivity occurs at the synaptic compartment, propagates to the soma, and is manifesting at low frequencies of stimulation. We show that this aberrant excitability is associated with a deficient adenosine tone, an inhibitory neuromodulator, driven by reduced levels of CD39/73 enzymes, responsible for the extracellular ATP-to-adenosine conversion.

View Article and Find Full Text PDF

Mitochondria, the cellular powerhouses, are pivotal to neuronal function and health, particularly through their role in regulating synaptic structure and function. Spine reprogramming, which underlies synapse development, depends heavily on mitochondrial dynamics-such as biogenesis, fission, fusion, and mitophagy as well as functions including ATP production, calcium (Ca) regulation, and retrograde signaling. Mitochondria supply the energy necessary for assisting synapse development and plasticity, while also regulating intracellular Ca homeostasis to prevent excitotoxicity and support synaptic neurotransmission.

View Article and Find Full Text PDF

Physical activity, cathepsin B, and cognitive health.

Trends Mol Med

January 2025

Body-Brain-Mind Laboratory, School of Psychology, Shenzhen University, Shenzhen, 518060, China. Electronic address:

Regular physical activity (PA) is beneficial for cognitive health, and cathepsin B (CTSB) - a protease released by skeletal muscle during PA - acts as a potential molecular mediator of this association. PA-induced metabolic and mechanical stress appears to increase plasma/serum CTSB levels. CTSB facilitates neurogenesis and synaptic plasticity in brain regions (e.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!