Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Scope: Urolithin A is an anti-inflammatory and neuroprotective gut-derived metabolite from ellagitannins and ellagic acid in pomegranate, berries, and nuts. The roles of SIRT-1 and autophagy in the neuroprotective activity of urolithin A are investigated.
Methods And Results: Analyses of culture supernatants from lipopolysaccharide-stimulated BV2 microglia show that urolithin A (2.5-10 µm) produced significant reduction in the production of nitrite, tumor necrosis factor (TNF)-α and IL-6. The anti-inflammatory effect of the compound is reversed in the presence of sirtuin (SIRT)-1 and the autophagy inhibitors EX527 and chloroquine, respectively. Protein analyses reveal reduction in p65 and acetyl-p65 protein. Treatment of BV2 microglia with urolithin A results in increased SIRT-1 activity and nuclear protein, while induction of autophagy by the compound is demonstrated using autophagy fluorescent and autophagy LC3 HiBiT reporter assays. Viability assays reveal that urolithin A produces a neuroprotective effect in APPSwe-transfected ReNcell VM human neural cells, which is reversed in the presence of EX527 and chloroquine. Increase in both SIRT-1 and autophagic activities are also detected in these cells following treatment with urolithin A.
Conclusions: It has been proposed that SIRT-1 activation and induction of autophagy are involved in the neuroprotective activity of urolithin A in brain cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/mnfr.201801237 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!