Current approaches for precision deposition of cells are not optimized for moist environments or for substrates with complex surface topographic features, for example, the surface of dermal matrices and other biomaterials. To overcome these challenges, an approach is presented that utilizes cell confinement in phase-separating polymer solutions of polyethylene glycol and dextran to precisely deliver keratinocytes in well-defined colonies. Using this approach, keratinocyte colonies are produced with superior viability, proliferative capacity, and barrier formation compared with the same number of cells dispersedly seeded across substrate surfaces. It is further demonstrated that keratinocytes delivered in colonies to the surface of acellular dermal matrices form an intact epidermal basal layer more rapidly and more completely than cells delivered by conventional dispersed seeding. These findings demonstrate that delivery of keratinocytes in phase-separating polymer solutions holds potential for enhancing growth of keratinocytes in culture and production of functional skin equivalents.

Download full-text PDF

Source
http://dx.doi.org/10.1002/term.2845DOI Listing

Publication Analysis

Top Keywords

dermal matrices
12
growth keratinocytes
8
keratinocytes culture
8
acellular dermal
8
phase-separating polymer
8
polymer solutions
8
keratinocytes
5
precision cell
4
cell delivery
4
delivery biphasic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!