A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Disparity level identification using the voxel-wise Gabor model of fMRI data. | LitMetric

Disparity level identification using the voxel-wise Gabor model of fMRI data.

Hum Brain Mapp

State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China.

Published: June 2019

Perceiving disparities is the intuitive basis for our understanding of the physical world. Although many electrophysiology studies have revealed the disparity-tuning characteristics of the neurons in the visual areas of the macaque brain, neuron population responses to disparity processing have seldom been investigated. Many disparity studies using functional magnetic resonance imaging (fMRI) have revealed the disparity-selective visual areas in the human brain. However, it is unclear how to characterize neuron population disparity-tuning responses using fMRI technique. In the present study, we constructed three voxel-wise encoding Gabor models to predict the voxel responses to novel disparity levels and used a decoding method to identify the new disparity levels from population responses in the cortex. Among the three encoding models, the fine-coarse model (FCM) that used fine/coarse disparities to fit the voxel responses to disparities outperformed the single model and uncrossed-crossed model. Moreover, the FCM demonstrated high accuracy in predicting voxel responses in V3A complex and high accuracy in identifying novel disparities from responses in V3A complex. Our results suggest that the FCM can better characterize the voxel responses to disparities than the other two models and V3A complex is a critical visual area for representing disparity information.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6865565PMC
http://dx.doi.org/10.1002/hbm.24547DOI Listing

Publication Analysis

Top Keywords

voxel responses
16
v3a complex
12
visual areas
8
neuron population
8
responses
8
population responses
8
disparity levels
8
model fcm
8
responses disparities
8
high accuracy
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!