AI Article Synopsis

Article Abstract

Background: Deep learning (DL) is a promising methodology for automatic detection of abnormalities in brain MRI.

Purpose: To automatically evaluate the quality of multicenter structural brain MRI images using an ensemble DL model based on deep convolutional neural networks (DCNNs).

Study Type: Retrospective.

Population: The study included 1064 brain images of autism patients and healthy controls from the Autism Brain Imaging Data Exchange (ABIDE) database. MRI data from 110 multiple sclerosis patients from the CombiRx study were included for independent testing.

Sequence: T -weighted MR brain images acquired at 3T.

Assessment: The ABIDE data were separated into training (60%), validation (20%), and testing (20%) sets. The ensemble DL model combined the results from three cascaded networks trained separately on the three MRI image planes (axial, coronal, and sagittal). Each cascaded network consists of a DCNN followed by a fully connected network. The quality of image slices from each plane was evaluated by the DCNN and the resultant image scores were combined into a volumewise quality rating using the fully connected network. The DL predicted ratings were compared with manual quality evaluation by two experts.

Statistical Tests: Receiver operating characteristic (ROC) curve, area under ROC curve (AUC), sensitivity, specificity, accuracy, and positive (PPV) and negative (NPV) predictive values.

Results: The AUC, sensitivity, specificity, accuracy, PPV, and NPV for image quality evaluation of the ABIDE test set using the ensemble model were 0.90, 0.77, 0.85, 0.84, 0.42, and 0.96, respectively. On the CombiRx set the same model achieved performance of 0.71, 0.41, 0.84, 0.73, 0.48, and 0.80.

Data Conclusion: This study demonstrated the high accuracy of DL in evaluating image quality of structural brain MRI in multicenter studies.

Level Of Evidence: 3 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2019;50:1260-1267.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6711839PMC
http://dx.doi.org/10.1002/jmri.26693DOI Listing

Publication Analysis

Top Keywords

image quality
12
quality evaluation
12
structural brain
12
brain mri
12
ensemble model
12
deep learning
8
study included
8
brain images
8
fully connected
8
connected network
8

Similar Publications

Characterization of Cutaneous Radiation Syndrome in a Mouse Model Using [18F]F- Fluorodeoxyglucose Positron Emission Tomography.

Health Phys

January 2025

Nuclear Medicine and Molecular Imaging Sciences Program, Department of Clinical & Diagnostic Sciences, School of Health Professions, University of Alabama at Birmingham, Birmingham, AL.

Ionizing radiation on the skin has the potential to cause various sequelae affecting quality of life and even leading to death due to multi-system failure. The development of radiation dermatitis is attributed to oxidative damage to the skin's basal layer and alterations in immune response, leading to inflammation. Past studies have shown that [18F]F-2-fluoro-2-deoxyglucose positron emission tomography-computed tomography ([18F]F-FDG PET/CT) can be used effectively for the detection of inflammatory activity, especially in conditions like hidradenitis suppurativa, psoriasis, and early atherosclerosis.

View Article and Find Full Text PDF

In 2023, a breast cancer risk assessment and a subsequent positive test for the BRCA-2 genetic mutation brought me to the uncomfortable intersection of a longstanding career as an advocate for high-quality medical evidence to support shared patient-provider decision making and a new role as a high-risk patient. My search for studies of available risk-management options revealed that the most commonly recommended approach for women with a ⩾20% lifetime breast cancer risk, intensive screening including annual mammography and/or magnetic resonance imaging beginning at age 25-40 years, was supported only by cancer-detection statistics, with almost no evidence on patient-centered outcomes-mortality, physical and psychological morbidity, or quality of life-compared with standard screening or a surgical alternative, bilateral risk-reducing mastectomy. In this commentary, I explore parallels between the use of the intensive screening protocol and another longstanding women's health recommendation based on limited evidence, the use of hormone therapy (HT) for postmenopausal chronic disease prevention, which was sharply curtailed after the publication of the groundbreaking Women's Health Initiative trial in 2002.

View Article and Find Full Text PDF

Radiography is a field of medicine inherently intertwined with technology. The dependency on technology is very high for obtaining images in ultrasound (US), computed tomography (CT), and magnetic resonance imaging (MRI). Although the reduction in radiation dose is not applicable in US and MRI, advancements in technology have made it possible in CT, with ongoing studies aimed at further optimization.

View Article and Find Full Text PDF

Promising mass spectrometry imaging: exploring microscale insights in food.

Crit Rev Food Sci Nutr

January 2025

State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, China.

This review focused on mass spectrometry imaging (MSI), a powerful tool in food analysis, covering its ion source schemes and procedures and their applications in food quality, safety, and nutrition to provide detailed insights into these aspects. The review presented a detailed introduction to both commonly used and emerging ionization sources, including nanoparticle laser desorption/ionization (NPs-LDI), air flow-assisted ionization (AFAI), desorption ionization with through-hole alumina membrane (DIUTHAME), plasma-assisted laser desorption ionization (PALDI), and low-temperature plasma (LTP). In the MSI process, particular emphasis was placed on quantitative MSI (QMSI) and super-resolution algorithms.

View Article and Find Full Text PDF

Background: Most patients with chest wall deformities have a negative body image, which affects their self-esteem and quality of life (QoL).

Objectives: The aim of this study was to evaluate changes in patients' QoL after minimally invasive repair of pectus excavatum (MIRPE).

Material And Methods: A prospective, single-center study was conducted between 2019 and 2023.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!