Chronic hepatitis B virus (HBV) infection remains a global public health problem. HBV-encoded X protein (HBx) is a multifunctional regulator that is required to initiate and maintain productive HBV infection, and is involved in HBV-related hepatocellular carcinoma (HCC). Inhibitors that interfere with the functions of HBx could be useful not only for the inhibition of HBV replication but also for the prevention or treatment of HBV-related HCC. To screen molecules that target HBx on a large scale remains a technical challenge due to a lack of sensitive and high-throughput system. In this work, we established an in vitro bioluminescent reporter system for screening HBx-targeting molecules. The system is based on a secretory fusion protein that combines HBx and NanoLuc (HBx-Nluc). The measured activity of NanoLuc in the culture supernatant of HBx-Nluc-expressing cells directly reflects the level of secreted HBx-Nluc. HBx protein-targeting intracellular anti-HBx single-chain variable fragment and RNA-targeting shRNA significantly reduced the secreted NanoLuc activity in HBx-Nluc-expressing cells. This system is simple and sensitive, and compatible with continuous non-disruptive screening, suggesting its potential usefulness for high-throughput screening and evaluating HBx-targeting molecules.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/abbs/gmz016 | DOI Listing |
Acta Biochim Biophys Sin (Shanghai)
April 2019
Key Laboratory of Medical Molecular Virology (MOE/NHC), Department of Microbiology and Parasitology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China.
Oncogene
February 2010
Department of Biochemistry and Molecular Biology, The George Washington University, Washington, DC 20037, USA.
Metastasis-associated protein 1 (MTA1), a master chromatin modifier, has been shown to regulate cancer progression and is widely upregulated in human cancer, including hepatitis B virus-associated hepatocellular carcinomas (HCCs). Here we provide evidence that hepatitis B virus transactivator protein HBx stimulates the expression of MTA1 but not of MTA2 or MTA3. The underlying mechanism of HBx stimulation of MTA1 involves HBx targeting of transcription factor nuclear factor (NF)-kappaB and the recruitment of HBx/p65 complex to the NF-kappaB consensus motif on the relaxed MTA1 gene chromatin.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!