Introduction: Reticular hybrid meshes represent an alternative material for intraperitoneal repair of abdominal hernias. These consist of a reticular mesh coated or interwoven/knitted with inert materials. This study assesses the performance of two reticular polypropylene-containing hybrid meshes, TiMESH (coated with titanium) and DynaMesh (interwoven with polyvinylidene fluoride), in vitro, as well as their efficiency in adhesion prevention and tissue incorporation in an intraperitoneal model.

Methods: The mesothelialization capacity of TiMESH and DynaMesh was evaluated in vitro and compared to that of Surgipro (reticular bare polypropylene) and Preclude (laminar expanded polytetrafluoroethylene). Mesh fragments were placed on the intact parietal peritoneum of New Zealand white rabbits (n = 24), and laparoscopy performed 7 days post-surgery. Fourteen days post-implantation, adhesions were evaluated and host tissue incorporation, macrophage response, collagen expression (immunohistochemistry/RT-PCR) and neoperitoneum formation assessed. Adhesions and omental tissue were also examined.

Results: Mesh pores in reticular meshes were devoid of cells in the in vitro study. TiMESH, DynaMesh and Surgipro showed similar adhesion rates at 7/14 days and optimal tissue integration, with significant differences in comparison to Preclude. The greatest presence of macrophages was observed for TiMESH and was significant versus that for Preclude. Hybrid meshes revealed significantly higher collagen 1 mRNA expression in implants, with no differences in the levels of collagen 3. Omental samples from animals with a reticular mesh showed significantly greater collagen 1 mRNA levels.

Conclusions: The reticular structure of a mesh limits the formation of a continuous mesothelial monolayer in vitro, regardless of its composition. The presence of titanium as a coating or polyvinylidene fluoride interwoven with polypropylene in a reticular structure did not prevent adhesions. The hybrid meshes showed proper integration and an increase in the mRNA Col 1 levels in the implant area compared to Surgipro or Preclude.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6392302PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0213005PLOS

Publication Analysis

Top Keywords

hybrid meshes
20
reticular
9
reticular hybrid
8
reticular mesh
8
polyvinylidene fluoride
8
tissue incorporation
8
timesh dynamesh
8
compared surgipro
8
collagen mrna
8
reticular structure
8

Similar Publications

The transient plane source (TPS) method heat transfer model was established. A body-fitted coordinate system is proposed to transform the unstructured grid structure to improve the speed of solving the heat transfer direct problem of the winding probe. A parallel Bayesian optimization algorithm based on a multi-objective hybrid strategy (MHS) is proposed based on an inverse problem.

View Article and Find Full Text PDF

A Near-Wall Methodology for Large-Eddy Simulation Based on Dynamic Hybrid RANS-LES.

Entropy (Basel)

December 2024

Department of Mechanical Engineering, University of Arkansas, Fayetteville, AR 72701, USA.

Attempts to mitigate the computational cost of fully resolved large-eddy simulation (LES) in the near-wall region include both the hybrid Reynolds-averaged Navier-Stokes/LES (HRL) and wall-modeled LES (WMLES) approaches. This paper presents an LES wall treatment method that combines key attributes of the two, in which the boundary layer mesh is sized in the streamwise and spanwise directions comparable to WMLES, and the wall-normal mesh is comparable to a RANS simulation without wall functions. A mixing length model is used to prescribe an eddy viscosity in the near-wall region, with the mixing length scale limited based on local mesh size.

View Article and Find Full Text PDF
Article Synopsis
  • The study introduces a neo-Hookean elasticity theory for hybrid mechano-active hydrogels by incorporating motor proteins into polymer structures, leading to materials that actively soften due to adjustable chain overlaps.
  • The focus is on polyacrylamide hydrogels enhanced with the bacterial protein FtsZ, using a multiscale model that combines microscopic rubber mesh theory, mesoscopic scaling concepts, and phase transition formalism to explain the observed active softening.
  • This research provides valuable insights for designing and controlling complex active hydrogels, potentially advancing applications in technology and biomedicine.
View Article and Find Full Text PDF

Contribution of HPV Status for Neutrophil Extracellular Traps Release in Oropharyngeal Cancer.

J Oral Pathol Med

January 2025

Department of Oral Pathology and Surgery, School of Dentistry, Universidade Federal de Minas Gerais (UFMG). Av. Antônio Carlos, Belo Horizonte, Minas Gerais, Brazil.

Background: Oropharyngeal squamous cell carcinoma (OP-SCC) represents a public health problem and human papillomavirus (HPV) is one of the risk factors. Neutrophil extracellular traps (NET) are meshes of DNA strands and granule proteins. NET has been identified in diverse cancers, whether associated with viruses or not.

View Article and Find Full Text PDF

This review paper presents the current progress in the development of resistance welding techniques for thermoplastic composites, with a particular emphasis on their application in hybrid joints, such as those involving thermosetting composites and metals. Resistance welding, a fusion bonding method, offers significant advantages over adhesive bonding and mechanical joining by eliminating the need for additional adhesive materials and enabling integration into automated manufacturing processes. The study highlights the unique benefits of resistance welding, including lower energy consumption compared to other methods and its compatibility with automated manufacturing, which can reduce production costs by up to 40%.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!