Endothelial cell (EC) mechanochemical transduction is the process by which mechanical stimuli are sensed by ECs and transduced into biochemical signals and ultimately into physiological responses. Identifying the mechanosensor/mechanochemical transducer(s) and describing the mechanism(s) by which they receive and transmit the signals has remained a central focus within the field. The heterotrimeric G protein, Gα, is proposed to be part of a macromolecular complex together with PECAM-1 at EC junctions and may constitute the mechanochemical transducer as it is rapidly activated within seconds of flow onset. The mechanically activated cation channel Piezo1 has recently been implicated due to its involvement in mediating early responses, such as calcium and ATP release. Here, we investigate the role of Piezo1 in rapid shear stress-induced Gα activation. We show that flow-induced dissociation of Gα from PECAM-1 in ECs at 15 s is abrogated by BIM-46187, a selective inhibitor of Gα activation, suggesting that Gα activation is required for PECAM-1/Gα dissociation. Although siRNA knockdown of Piezo1 caused a dramatic decrease in PECAM-1/Gα association in the basal condition, it had no effect on flow-induced dissociation. Interestingly, siRNA knockdown of Piezo1 caused a marked decrease in PECAM-1 expression. Additionally, selective blockade of Piezo1 with ion channel inhibitors had no effect on flow-induced PECAM-1/Gα dissociations. Lastly, flow onset caused increased association of Gβ with Piezo1 as well as with the p101 subunit of phosphoinositide 3-kinase, which were both blocked by the Gβγ inhibitor gallein. Together, our results indicate that flow-induced activation of Piezo1 is not upstream of G protein activation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6580164PMC
http://dx.doi.org/10.1152/ajpcell.00215.2018DOI Listing

Publication Analysis

Top Keywords

gα activation
12
flow-induced activation
8
piezo1
8
flow onset
8
flow-induced dissociation
8
sirna knockdown
8
knockdown piezo1
8
piezo1 caused
8
activation
7
6

Similar Publications

Novel rhodanine-thiazole hybrids as potential antidiabetic agents: a structure-based drug design approach.

RSC Med Chem

November 2024

Department of Pharmaceutical Chemistry, JSS College of Pharmacy, Mysuru, JSS Academy of Higher Education and Research Mysuru-570015 Karnataka India.

New rhodanine-thiazole clubbed compounds (7a-7l) were synthesised and characterised with various spectroscopy methods. The synthesised hybrids underwent HPA, HLAG inhibition, and peroxisome proliferator-activated receptor-gamma (PPAR-γ) expression assays. Through the biological study, compound 7f showed promising inhibitory activity against HPA with an IC value of 27.

View Article and Find Full Text PDF

Plasma miRNAs Correlate with Structural Brain and Cardiac Damage in Friedreich's Ataxia.

Cerebellum

December 2024

Department of Neurology, School of Medical Sciences, University of Campinas - UNICAMP, Rua Tessália Vieira de Camargo, 126. Cidade Universitária "Zeferino Vaz" Campinas, Campinas, SP, 13083-887, Brazil.

Friedreich's Ataxia (FRDA) is the most common autosomal recessive ataxia worldwide and is caused by biallelic unstable intronic GAA expansions at FXN. With its limited therapy and the recent approval of the first disease-modifying agent for FRDA, the search for biological markers is urgently needed to assist and ease the development of therapies. MiRNAs have emerged as promising biomarkers in various medical fields such as oncology, cardiology, epilepsy and neurology as well.

View Article and Find Full Text PDF

L-arginine: glycine amidinotransferase (AGAT) gained academic interest as the rate-limiting enzyme in creatine biosynthesis and its role in the regulation of creatine homeostasis. Of clinical relevance is the diagnosis of patients with AGAT deficiency but also the potential role of AGAT as therapeutic target for the treatment of another creatine deficiency syndrome, guanidinoacetate N-methyltransferase (GAMT) deficiency. Applying a stable isotope-labeled substrate method, we utilized ARG 15N (ARG-δ2) and GLY 13C15N (GLY-δ3) to determine the rate of 1,2-13C,15N guanidinoacetate (GAA-δ5) formation to assess AGAT activity in various mouse tissue samples and human-derived cells.

View Article and Find Full Text PDF

: To examine the regulatory role of PCNA in MM, we have targeted PCNA with the experimental drug ATX-101 in three commercial cell lines (JJN3, RPMI 1660, AMO) and seven in-house patient-derived cell lines with a more primary cell-like phenotype (TK9, 10, 12, 13, 14, 16 and 18) and measured the systemic molecular effects. : We have used a multi-omics untargeted approach, measuring the gene expression (transcriptomics), a subproteomics approach measuring mainly signalling proteins and proteins in complex with these (signallomics) and quantitative metabolomics. These results are supplemented with traditional analysis, e.

View Article and Find Full Text PDF

Pompe disease (PD) is a rare progressive autosomal recessive disorder resulting from the deficiency of acid alpha-glucosidase (GAA) enzyme activity. Due to its multisystemic involvement, PD leads to significant morbidity and impacts patients' quality of life. Despite the availability of approved disease-modifying treatments, the prompt diagnosis and management of PD, which are crucial for patient outcomes, still present several challenges.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!